The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a nonlocal elliptic problem”

Existence and nonexistence of solutions for a model of gravitational interaction of particles, II

Piotr Biler, Danielle Hilhorst, Tadeusz Nadzieja (1994)

Colloquium Mathematicae

Similarity:

We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.

On the stability of solutions of nonlinear parabolic differential-functional equations

Stanisław Brzychczy (1996)

Annales Polonici Mathematici

Similarity:

We consider a nonlinear differential-functional parabolic boundary initial value problem (1) ⎧A z + f(x,z(t,x),z(t,·)) - ∂z/∂t = 0 for t > 0, x ∈ G, ⎨z(t,x) = h(x)     for t > 0, x ∈ ∂G, ⎩z(0,x) = φ₀(x)     for x ∈ G, and the associated elliptic boundary value problem with Dirichlet condition (2) ⎧Az + f(x,z(x),z(·)) = 0  for x ∈ G, ⎨z(x) = h(x)    for x ∈ ∂G ⎩ where x = ( x , . . . , x m ) G m , G is an open and bounded domain with C 2 + α (0 < α ≤ 1) boundary, the operator     Az := ∑j,k=1m ajk(x) (∂²z/(∂xj...

On positive solutions of quasilinear elliptic systems

Yuanji Cheng (1997)

Czechoslovak Mathematical Journal

Similarity:

In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems - Δ p u = f ( x , u , v ) , in Ω , - Δ p v = g ( x , u , v ) , in Ω , u = v = 0 , on Ω , where - Δ p is the p -Laplace operator, p > 1 and Ω is a C 1 , α -domain in n . We prove an analogue of [7, 16] for the eigenvalue problem with f ( x , u , v ) = λ 1 v p - 1 , g ( x , u , v ) = λ 2 u p - 1 and obtain a non-existence result of positive solutions for the general systems.

On a comparison principle for a quasilinear elliptic boundary value problem of a nonmonotone type

Michal Křížek, Liping Liu (1996)

Applicationes Mathematicae

Similarity:

A nonlinear elliptic partial differential equation with the Newton boundary conditions is examined. We prove that for greater data we get a greater weak solution. This is the so-called comparison principle. It is applied to a steady-state heat conduction problem in anisotropic magnetic cores of large transformers.