Boolean algebras, splitting theorems, and sets
Michael Morley, Robert Soare (1975)
Fundamenta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Michael Morley, Robert Soare (1975)
Fundamenta Mathematicae
Similarity:
Jan Waszkiewicz (1974)
Colloquium Mathematicae
Similarity:
Ernest J. Cockayne, Stephen Finbow (2004)
Discussiones Mathematicae Graph Theory
Similarity:
For each vertex s of the vertex subset S of a simple graph G, we define Boolean variables p = p(s,S), q = q(s,S) and r = r(s,S) which measure existence of three kinds of S-private neighbours (S-pns) of s. A 3-variable Boolean function f = f(p,q,r) may be considered as a compound existence property of S-pns. The subset S is called an f-set of G if f = 1 for all s ∈ S and the class of f-sets of G is denoted by . Only 64 Boolean functions f can produce different classes , special cases...
Rostislav Černý (2006)
Kybernetika
Similarity:
Consider a stationary Boolean model with convex grains in and let any exposed lower tangent point of be shifted towards the hyperplane by the length of the part of the segment between the point and its projection onto the covered by . The resulting point process in the halfspace (the Laslett’s transform of ) is known to be stationary Poisson and of the same intensity as the original Boolean model. This result was first formulated for the planar Boolean model (see N. Cressie...
Rainer Schimming (1996)
Discussiones Mathematicae Graph Theory
Similarity:
A special relational structure, called genealogical tree, is introduced; its social interpretation and geometrical realizations are discussed. The numbers of all abstract genealogical trees with exactly n+1 nodes and k leaves is found by means of enumeration of code words. For each n, the form a partition of the n-th Catalan numer Cₙ, that means .
Piotr Nayar (2014)
Colloquium Mathematicae
Similarity:
We consider Boolean functions defined on the discrete cube equipped with a product probability measure , where and γ = √(α/β). This normalization ensures that the coordinate functions are orthonormal in . We prove that if the spectrum of a Boolean function is concentrated on the first two Fourier levels, then the function is close to a certain function of one variable. Our theorem strengthens the non-symmetric FKN Theorem due to Jendrej, Oleszkiewicz and Wojtaszczyk. Moreover,...
Eric Hall, Kyriakos Keremedis (2013)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
(i) The statement P(ω) = “every partition of ℝ has size ≤ |ℝ|” is equivalent to the proposition R(ω) = “for every subspace Y of the Tychonoff product the restriction |Y = Y ∩ B: B ∈ of the standard clopen base of to Y has size ≤ |(ω)|”. (ii) In ZF, P(ω) does not imply “every partition of (ω) has a choice set”. (iii) Under P(ω) the following two statements are equivalent: (a) For every Boolean algebra of size ≤ |ℝ| every filter can be extended to an ultrafilter. (b) Every Boolean...
W. B. Vasantha Kandasamy (1992)
Publications du Département de mathématiques (Lyon)
Similarity:
Jerzy Płonka (2001)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
Let τ: F → N be a type of algebras, where F is a set of fundamental operation symbols and N is the set of all positive integers. An identity φ ≈ ψ is called biregular if it has the same variables in each of it sides and it has the same fundamental operation symbols in each of it sides. For a variety V of type τ we denote by the biregularization of V, i.e. the variety of type τ defined by all biregular identities from Id(V). Let B be the variety of Boolean algebras of type , where...
Leila Fazlpar, Ali Armandnejad (2023)
Czechoslovak Mathematical Journal
Similarity:
Let be an matrix of zeros and ones. The matrix is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero -entry. We characterize all linear maps perserving the set of Ferrers vectors over the binary Boolean semiring and over the Boolean ring . Also, we have achieved the number of these linear maps in each case.