The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Perturbations of the metric in Seiberg-Witten equations”

Determinant bundle over the universal moduli space of vector bundles over the Teichmüller space

Indranil Biswas (1997)

Annales de l'institut Fourier

Similarity:

The moduli space of stable vector bundles over a moving curve is constructed, and on this a generalized Weil-Petersson form is constructed. Using the local Riemann-Roch formula of Bismut-Gillet-Soulé it is shown that the generalized Weil-Petersson form is the curvature of the determinant line bundle, equipped with the Quillen metric, for a vector bundle on the fiber product of the universal moduli space with the universal curve.

Stable bundles on hypercomplex surfaces

Ruxandra Moraru, Misha Verbitsky (2010)

Open Mathematics

Similarity:

A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures...

On para-Nordenian structures

Arif A. Salimov, Filiz Agca (2010)

Annales Polonici Mathematici

Similarity:

The aim of this paper is to investigate para-Nordenian properties of the Sasakian metrics in the cotangent bundle.

On the geometry of tangent bundles with the metric II+III

A. Gezer, O. Tarakci, A. A. Salimov (2010)

Annales Polonici Mathematici

Similarity:

The main purpose of this paper is to investigate some relations between the flatness or locally symmetric property on the tangent bundle TM equipped with the metric II+III and the same property on the base manifold M and study geodesics by means of the adapted frame on TM.

An anti-Kählerian Einstein structure on the tangent bundle of a space form

Vasile Oproiu, Neculai Papaghiuc (2005)

Colloquium Mathematicae

Similarity:

In [11] we have considered a family of almost anti-Hermitian structures (G,J) on the tangent bundle TM of a Riemannian manifold (M,g), where the almost complex structure J is a natural lift of g to TM interchanging the vertical and horizontal distributions VTM and HTM and the metric G is a natural lift of g of Sasaki type, with the property of being anti-Hermitian with respect to J. Next, we have studied the conditions under which (TM,G,J) belongs to one of the eight classes of anti-Hermitian...