Displaying similar documents to “Horizontal lift of tensor fields of type (1,1) from a manifold to its tangent bundle of higher order”

Theory, Experiment and Computation of Half Metals for Spintronics: Recent Progress in Si-based Materials

C. Y. Fong, M. Shaughnessy, L. Damewood, L. H. Yang (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Since the term “spintronics” was conceived in 1996, there have been several directions taken to develop new semiconductor-based magnetic materials for device applications using spin, or spin and charge, as the operational paradigm. Anticipating their integration into mature semiconductor technologies, one direction is to make use of materials involving Si. In this review, we focus on the progress made, since 2005, in Si-based half metallic spintronic materials. In addition to commenting...

Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular Complexes

Tao Liao, Yongjie Zhang, Peter M. Kekenes-Huskey, Yuhui Cheng, Anushka Michailova, Andrew D. McCulloch, Michael Holst, J. Andrew McCammon (2013)

Molecular Based Mathematical Biology

Similarity:

Multi-scale modeling plays an important role in understanding the structure and biological functionalities of large biomolecular complexes. In this paper, we present an efficient computational framework to construct multi-scale models from atomic resolution data in the Protein Data Bank (PDB), which is accelerated by multi-core CPU and programmable Graphics Processing Units (GPU). A multi-level summation of Gaussian kernel functions is employed to generate implicit models for biomolecules....

A Stochastic Solver of the Generalized Born Model

Robert C. Harris, Travis Mackoy, Marcia O. Fenley (2013)

Molecular Based Mathematical Biology

Similarity:

A stochastic generalized Born (GB) solver is presented which can give predictions of energies arbitrarily close to those that would be given by exact effective GB radii, and, unlike analytical GB solvers, these errors are Gaussian with estimates that can be easily obtained from the algorithm. This method was tested by computing the electrostatic solvation energies (ΔGsolv) and the electrostatic binding energies (ΔGbind) of a set of DNA-drug complexes, a set of protein-drug complexes,...

Efficient simulation of unidirectional pulse propagation in high-contrast nonlinear nanowaveguides

Jonathan Andreasen, Miroslav Kolesik (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

This work demonstrates an improved method to simulate long-distance femtosecond pulse propagation in highcontrast nanowaveguides. Different from typical beam propagation methods, the foundational tool here is capable of simulating strong spatiotemporal waveform reshaping and extreme spectral dynamics. Meanwhile, the ability to fully capture effects due to index contrast in the transverse direction is retained, without requiring a decomposition of the electric field in terms of waveguide...

A numerically efficient approach to the modelling of double-Qdot channels

A. Shamloo, A.P. Sowa (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab...

Some remarks on a problem of C. Alsina.

J. Matkowski, M. Sablik (1986)

Stochastica

Similarity:

Equation [1] f(x+y) + f (f(x)+f(y)) = f (f(x+f(y)) + f(f(x)+y)) has been proposed by C. Alsina in the class of continuous and decreasing involutions of (0,+∞). General solution of [1] is not known yet. Nevertheless we give solutions of the following equations which may be derived from [1]: [2] f(x+1) + f (f(x)+1) = 1, [3] f(2x) + f(2f(x)) = f(2f(x + f(x))). Equation [3] leads to a Cauchy functional equation: ...