The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Multisymplectic forms of degree three in dimension seven”

Soldered double linear morphisms

Alena Vanžurová (1992)

Mathematica Bohemica

Similarity:

Our aim is to show a method of finding all natural transformations of a functor T T * into itself. We use here the terminology introduced in [4,5]. The notion of a soldered double linear morphism of soldered double vector spaces (fibrations) is defined. Differentiable maps f : C 0 C 0 commuting with T T * -soldered automorphisms of a double vector space C 0 = V * × V × V * are investigated. On the set Z s ( C 0 ) of such mappings, appropriate partial operations are introduced. The natural transformations T T * T T * are bijectively related...

The contact system on the ( m , ) -jet spaces

J. Muñoz, F. J. Muriel, Josemar Rodríguez (2001)

Archivum Mathematicum

Similarity:

This paper is a continuation of [MMR:98], where we give a construction of the canonical Pfaff system Ω ( M m ) on the space of ( m , ) -velocities of a smooth manifold M . Here we show that the characteristic system of Ω ( M m ) agrees with the Lie algebra of Aut ( m ) , the structure group of the principal fibre bundle M ˇ m J m ( M ) , hence it is projectable to an irreducible contact system on the space of ( m , ) -jets ( = -th order contact elements of dimension m ) of M . Furthermore, we translate to the language of Weil bundles the structure...

SL 2 -equivariant polynomial automorphisms of the binary forms

Alexandre Kurth (1997)

Annales de l'institut Fourier

Similarity:

We consider the space of binary forms of degree n 1 denoted by R n : = [ x , y ] n . We will show that every polynomial automorphism of R n which commutes with the linear SL 2 ( ) -action and which maps the variety of forms with pairwise distinct zeroes into itself, is a multiple of the identity on R n .