Displaying similar documents to “Special Kaehler manifolds: A survey”

Projective Curvature Tensorin 3-dimensional Connected Trans-Sasakian Manifolds

Krishnendu De, Uday Chand De (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study ξ -projectively flat and φ -projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.

Hypersurfaces with almost complex structures in the real affine space

Mayuko Kon (2007)

Colloquium Mathematicae

Similarity:

We study affine hypersurface immersions f : M 2 n + 1 , where M is an almost complex n-dimensional manifold. The main purpose is to give a condition for (M,J) to be a special Kähler manifold with respect to the Levi-Civita connection of an affine fundamental form.

Quaternionic and para-quaternionic CR structure on (4n+3)-dimensional manifolds

Dmitri Alekseevsky, Yoshinobu Kamishima (2004)

Open Mathematics

Similarity:

We define notion of a quaternionic and para-quaternionic CR structure on a (4n+3)-dimensional manifold M as a triple (ω1,ω2,ω3) of 1-forms such that the corresponding 2-forms satisfy some algebraic relations. We associate with such a structure an Einstein metric on M and establish relations between quaternionic CR structures, contact pseudo-metric 3-structures and pseudo-Sasakian 3-structures. Homogeneous examples of (para)-quaternionic CR manifolds are given and a reduction construction...

CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions

Fumio Narita (1996)

Colloquium Mathematicae

Similarity:

We consider a Riemannian submersion π: M → N, where M is a CR-submanifold of a locally conformal Kaehler manifold L with the Lee form ω which is strongly non-Kaehler and N is an almost Hermitian manifold. First, we study some geometric structures of N and the relation between the holomorphic sectional curvatures of L and N. Next, we consider the leaves M of the foliation given by ω = 0 and give a necessary and sufficient condition for M to be a Sasakian manifold.