The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Galerkin-finite element solution of nonlinear evolution problems”

Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem

Florian Mehats (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme,...

Symmetric interior penalty discontinuous Galerkin method for nonlinear fully coupled quasi-static thermo-poroelasticity problems

Fan Chen, Ming Cui, Chenguang Zhou (2025)

Applications of Mathematics

Similarity:

We propose a symmetric interior penalty discontinuous Galerkin (DG) method for nonlinear fully coupled quasi-static thermo-poroelasticity problems. Firstly, a fully implicit nonlinear discrete scheme is constructed by adopting the DG method for the spatial approximation and the backward Euler method for the temporal discretization. Subsequently, the existence and uniqueness of the solution of the numerical scheme is proved, and then we derive the a priori error estimate for the three...