Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem
- Volume: 36, Issue: 6, page 1111-1132
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Caffarelli and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation: analogy with the porous medium equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 41–80. Zbl1016.35038
- [2] G. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations. J. Partial Differential Equations Ser. A 1 (1988) 12–42. Zbl0699.35152
- [3] E. Godlewski and P.-A. Raviart, Hyperbolic systems of conservation laws. Mathématiques & Applications, Ellipse, Paris (1991). Zbl0768.35059MR1304494
- [4] B. Larrouturou, Modélisation mathématique et numérique pour les sciences de l’ingénieur. Cours de l’École polytechnique, Département de Mathématiques Appliquées, 1996.
- [5] R.J. LeVeque, Numerical Methods for Conservation Laws. Lectures in Mathematics, Birkhäuser Verlag (1990). Zbl0723.65067MR1077828
- [6] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Études Mathématiques, Dunod, Gauthier-Villars (1969). Zbl0189.40603MR259693
- [7] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et recherches Mathématiques, Dunod (1968). Zbl0165.10801MR247243
- [8] F. Méhats, Étude de problèmes aux limites en physique du transport des particules chargées. Thèse de doctorat (1997).
- [9] F. Méhats and J.-M. Roquejoffre, A nonlinear oblique derivative boundary value problem for the heat equation, Part 1 and Part 2. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 221–253 and 691–724. Zbl0922.35072
- [10] A.I. Nazarov and N.N. Ural’tseva, A Problem with an Oblique Derivative for a Quasilinear Parabolic Equation. J. Math. Sci. 77 (1995) 3212–3220. Zbl0836.35075