Displaying similar documents to “A survey of boundary value problems for bundles over complex spaces”

Variations of complex structures on an open Riemann surface

M. S. Narasimhan (1961)

Annales de l'institut Fourier

Similarity:

Soit U 1 un ouvert dans C m . Soit π 1 : S U 1 une famille holomorphe de structures complexes sur une surface de Riemann non-compacte M , avec S t 0 = π 1 - 1 ( t 0 ) = M . ( S = S ( M × U 1 ) est une structure complexe sur le produit différentiable M × U 1 ). Soit M 1 un domaine relativement compact dans M . On démontre : pour tout voisinage de Stein U de t 0 , assez petit, la famille π 1 : S ( M 1 × U ) U est isomorphe à la famille π : Ω π ( Ω ) , où Ω est un de la variété produit M × C m , π étant la projection M × C m C m . On donne aussi un résultat analogue pour le cas des variations différentiables. ...

Zeros of bounded holomorphic functions in strictly pseudoconvex domains in 2

Jim Arlebrink (1993)

Annales de l'institut Fourier

Similarity:

Let D be a bounded strictly pseudoconvex domain in 2 and let X be a positive divisor of D with finite area. We prove that there exists a bounded holomorphic function f such that X is the zero set of f . This result has previously been obtained by Berndtsson in the case where D is the unit ball in 2 .

Analytic cohomology of complete intersections in a Banach space

Imre Patyi (2004)

Annales de l’institut Fourier

Similarity:

Let X be a Banach space with a countable unconditional basis (e.g., X = 2 ), Ω X an open set and f 1 , ... , f k complex-valued holomorphic functions on Ω , such that the Fréchet differentials d f 1 ( x ) , ... , d f k ( x ) are linearly independant over at each x Ω . We suppose that M = { x Ω : f 1 ( x ) = ... = f k ( x ) = 0 } is a complete intersection and we consider a holomorphic Banach vector bundle E M . If I (resp. 𝒪 E ) denote the ideal of germs of holomorphic functions on Ω that vanish on M (resp. the sheaf of germs of holomorphic sections of E ), then the sheaf cohomology groups...