Analytic cohomology of complete intersections in a Banach space
Imre Patyi[1]
- [1] University of California at Riverside, Department of Mathematics, Riverside CA 92521-0135 (USA)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 1, page 147-158
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPatyi, Imre. "Analytic cohomology of complete intersections in a Banach space." Annales de l’institut Fourier 54.1 (2004): 147-158. <http://eudml.org/doc/116102>.
@article{Patyi2004,
abstract = {Let $X$ be a Banach space with a countable unconditional basis (e.g., $X=\ell _2$),
$\Omega \subset X$ an open set and $f_1,\ldots ,f_k$ complex-valued holomorphic functions
on $\Omega $, such that the Fréchet differentials $df_1(x),\ldots ,df_k(x)$ are linearly
independant over $\mathbb \{C\}$ at each $x\in \Omega $. We suppose that
$M=\lbrace x\in \Omega :f_1(x)=\ldots =f_k(x)=0\rbrace $ is a complete intersection and we consider a
holomorphic Banach vector bundle $E\rightarrow M$. If $I$ (resp.$\{\mathcal \{O\}\}^E$) denote the ideal of
germs of holomorphic functions on $\Omega $ that vanish on $M$ (resp. the sheaf of germs
of holomorphic sections of $E$), then the sheaf cohomology groups $H^q(\Omega ,I)$,
$H^q(M,\{\mathcal \{O\}\}^E)$ vanish for all $q\ge 1$.},
affiliation = {University of California at Riverside, Department of Mathematics, Riverside CA 92521-0135 (USA)},
author = {Patyi, Imre},
journal = {Annales de l’institut Fourier},
keywords = {analytic cohomology; complete intersections},
language = {eng},
number = {1},
pages = {147-158},
publisher = {Association des Annales de l'Institut Fourier},
title = {Analytic cohomology of complete intersections in a Banach space},
url = {http://eudml.org/doc/116102},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Patyi, Imre
TI - Analytic cohomology of complete intersections in a Banach space
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 147
EP - 158
AB - Let $X$ be a Banach space with a countable unconditional basis (e.g., $X=\ell _2$),
$\Omega \subset X$ an open set and $f_1,\ldots ,f_k$ complex-valued holomorphic functions
on $\Omega $, such that the Fréchet differentials $df_1(x),\ldots ,df_k(x)$ are linearly
independant over $\mathbb {C}$ at each $x\in \Omega $. We suppose that
$M=\lbrace x\in \Omega :f_1(x)=\ldots =f_k(x)=0\rbrace $ is a complete intersection and we consider a
holomorphic Banach vector bundle $E\rightarrow M$. If $I$ (resp.${\mathcal {O}}^E$) denote the ideal of
germs of holomorphic functions on $\Omega $ that vanish on $M$ (resp. the sheaf of germs
of holomorphic sections of $E$), then the sheaf cohomology groups $H^q(\Omega ,I)$,
$H^q(M,{\mathcal {O}}^E)$ vanish for all $q\ge 1$.
LA - eng
KW - analytic cohomology; complete intersections
UR - http://eudml.org/doc/116102
ER -
References
top- F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann 140 (1960), 94-123 Zbl0095.28004MR148939
- L. Lempert, The Dolbeault complex in infinite dimensions I, J. Amer. Math. Soc 11 (1998), 485-520 Zbl0904.32014MR1603858
- L. Lempert, The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc 12 (1999), 775-793 Zbl0926.32048MR1665984
- L. Lempert, The Dolbeault complex in infinite dimensions III, Invent. Math 142 (2000), 579-603 Zbl0983.32010MR1804162
- L. Lempert, Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier (Grenoble) 49 (1999), 1293-1304 Zbl0944.46046MR1703089
- L. Lempert, Approximation of holomorphic functions of infinitely many variables II, Ann. Inst. Fourier (Grenoble) 50 (2000), 423-442 Zbl0969.46032MR1775356
- L. Lempert, Analytic cohomology in Fréchet spaces Zbl1085.46031MR2016194
- L. Lempert, Plurisubharmonic domination Zbl1042.32013MR2051614
- L. Lempert, Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math., to appear Zbl1089.32011MR2128298
- I. Patyi, On the -equation in a Banach space, Bull. Soc. Math. France 128 (2000), 391-406 Zbl0967.32036MR1792475
- I. Patyi, Analytic cohomology vanishing in infinite dimensions, (2000) Zbl0967.32036
- I. Patyi, On a splitting problem, Bull. Sci. Math 126 (2002), 631-636 Zbl1017.46029MR1944389
- I. Patyi, On the Oka principle in a Banach space I, Math. Ann 326 (2003), 417-441 Zbl1044.32018MR1992271
- I. Patyi, On the Oka principle in a Banach space II, Math. Ann 326 (2003), 443-458 Zbl1045.32023MR1992271
- I. Patyi, Cohomological characterization of pseudoconvexity in a Banach space, Math. Z 245 (2003), 371-386 Zbl1040.32028MR2013505
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.