Analytic cohomology of complete intersections in a Banach space

Imre Patyi[1]

  • [1] University of California at Riverside, Department of Mathematics, Riverside CA 92521-0135 (USA)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 1, page 147-158
  • ISSN: 0373-0956

Abstract

top
Let X be a Banach space with a countable unconditional basis (e.g., X = 2 ), Ω X an open set and f 1 , ... , f k complex-valued holomorphic functions on Ω , such that the Fréchet differentials d f 1 ( x ) , ... , d f k ( x ) are linearly independant over at each x Ω . We suppose that M = { x Ω : f 1 ( x ) = ... = f k ( x ) = 0 } is a complete intersection and we consider a holomorphic Banach vector bundle E M . If I (resp. 𝒪 E ) denote the ideal of germs of holomorphic functions on Ω that vanish on M (resp. the sheaf of germs of holomorphic sections of E ), then the sheaf cohomology groups H q ( Ω , I ) , H q ( M , 𝒪 E ) vanish for all q 1 .

How to cite

top

Patyi, Imre. "Analytic cohomology of complete intersections in a Banach space." Annales de l’institut Fourier 54.1 (2004): 147-158. <http://eudml.org/doc/116102>.

@article{Patyi2004,
abstract = {Let $X$ be a Banach space with a countable unconditional basis (e.g., $X=\ell _2$), $\Omega \subset X$ an open set and $f_1,\ldots ,f_k$ complex-valued holomorphic functions on $\Omega $, such that the Fréchet differentials $df_1(x),\ldots ,df_k(x)$ are linearly independant over $\mathbb \{C\}$ at each $x\in \Omega $. We suppose that $M=\lbrace x\in \Omega :f_1(x)=\ldots =f_k(x)=0\rbrace $ is a complete intersection and we consider a holomorphic Banach vector bundle $E\rightarrow M$. If $I$ (resp.$\{\mathcal \{O\}\}^E$) denote the ideal of germs of holomorphic functions on $\Omega $ that vanish on $M$ (resp. the sheaf of germs of holomorphic sections of $E$), then the sheaf cohomology groups $H^q(\Omega ,I)$, $H^q(M,\{\mathcal \{O\}\}^E)$ vanish for all $q\ge 1$.},
affiliation = {University of California at Riverside, Department of Mathematics, Riverside CA 92521-0135 (USA)},
author = {Patyi, Imre},
journal = {Annales de l’institut Fourier},
keywords = {analytic cohomology; complete intersections},
language = {eng},
number = {1},
pages = {147-158},
publisher = {Association des Annales de l'Institut Fourier},
title = {Analytic cohomology of complete intersections in a Banach space},
url = {http://eudml.org/doc/116102},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Patyi, Imre
TI - Analytic cohomology of complete intersections in a Banach space
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 147
EP - 158
AB - Let $X$ be a Banach space with a countable unconditional basis (e.g., $X=\ell _2$), $\Omega \subset X$ an open set and $f_1,\ldots ,f_k$ complex-valued holomorphic functions on $\Omega $, such that the Fréchet differentials $df_1(x),\ldots ,df_k(x)$ are linearly independant over $\mathbb {C}$ at each $x\in \Omega $. We suppose that $M=\lbrace x\in \Omega :f_1(x)=\ldots =f_k(x)=0\rbrace $ is a complete intersection and we consider a holomorphic Banach vector bundle $E\rightarrow M$. If $I$ (resp.${\mathcal {O}}^E$) denote the ideal of germs of holomorphic functions on $\Omega $ that vanish on $M$ (resp. the sheaf of germs of holomorphic sections of $E$), then the sheaf cohomology groups $H^q(\Omega ,I)$, $H^q(M,{\mathcal {O}}^E)$ vanish for all $q\ge 1$.
LA - eng
KW - analytic cohomology; complete intersections
UR - http://eudml.org/doc/116102
ER -

References

top
  1. F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann 140 (1960), 94-123 Zbl0095.28004MR148939
  2. L. Lempert, The Dolbeault complex in infinite dimensions I, J. Amer. Math. Soc 11 (1998), 485-520 Zbl0904.32014MR1603858
  3. L. Lempert, The Dolbeault complex in infinite dimensions II, J. Amer. Math. Soc 12 (1999), 775-793 Zbl0926.32048MR1665984
  4. L. Lempert, The Dolbeault complex in infinite dimensions III, Invent. Math 142 (2000), 579-603 Zbl0983.32010MR1804162
  5. L. Lempert, Approximation de fonctions holomorphes d'un nombre infini de variables, Ann. Inst. Fourier (Grenoble) 49 (1999), 1293-1304 Zbl0944.46046MR1703089
  6. L. Lempert, Approximation of holomorphic functions of infinitely many variables II, Ann. Inst. Fourier (Grenoble) 50 (2000), 423-442 Zbl0969.46032MR1775356
  7. L. Lempert, Analytic cohomology in Fréchet spaces Zbl1085.46031MR2016194
  8. L. Lempert, Plurisubharmonic domination Zbl1042.32013MR2051614
  9. L. Lempert, Vanishing cohomology for holomorphic vector bundles in a Banach setting, Asian J. Math., to appear Zbl1089.32011MR2128298
  10. I. Patyi, On the ¯ -equation in a Banach space, Bull. Soc. Math. France 128 (2000), 391-406 Zbl0967.32036MR1792475
  11. I. Patyi, Analytic cohomology vanishing in infinite dimensions, (2000) Zbl0967.32036
  12. I. Patyi, On a splitting problem, Bull. Sci. Math 126 (2002), 631-636 Zbl1017.46029MR1944389
  13. I. Patyi, On the Oka principle in a Banach space I, Math. Ann 326 (2003), 417-441 Zbl1044.32018MR1992271
  14. I. Patyi, On the Oka principle in a Banach space II, Math. Ann 326 (2003), 443-458 Zbl1045.32023MR1992271
  15. I. Patyi, Cohomological characterization of pseudoconvexity in a Banach space, Math. Z 245 (2003), 371-386 Zbl1040.32028MR2013505

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.