Some remarks on variants of the Navier-Stokes equations
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
Michael Wiegner (2003)
Banach Center Publications
Similarity:
M. Pulvirenti (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
Jason S. Howell, Noel J. Walkington (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
A mixed finite element method for the Navier–Stokes equations is introduced in which the stress is a primary variable. The variational formulation retains the mathematical structure of the Navier–Stokes equations and the classical theory extends naturally to this setting. Finite element spaces satisfying the associated inf–sup conditions are developed.
Jishan Fan, Xuanji Jia, Yong Zhou (2019)
Applications of Mathematics
Similarity:
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
Crispo, F., Maremonti, P. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Rainer Picard (2008)
Banach Center Publications
Similarity:
The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.
Zujin Zhang, Weijun Yuan, Yong Zhou (2019)
Applications of Mathematics
Similarity:
We review the developments of the regularity criteria for the Navier-Stokes equations, and make some further improvements.
Chelkak, S., Koshelev, A., Oganesyan, L. (1997)
Memoirs on Differential Equations and Mathematical Physics
Similarity:
G. Wittum (1989)
Numerische Mathematik
Similarity:
Josef Málek (2002)
Applications of Mathematics
Similarity:
Zubelevich, Oleg (2005)
Lobachevskii Journal of Mathematics
Similarity: