Displaying similar documents to “A minimum effort optimal control problem for elliptic PDEs”

A minimum effort optimal control problem for elliptic PDEs

Christian Clason, Kazufumi Ito, Karl Kunisch (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This work is concerned with a class of minimum effort problems for partial differential equations, where the control cost is of L-type. Since this problem is non-differentiable, a regularized functional is introduced that can be minimized by a superlinearly convergent semi-smooth Newton method. Uniqueness and convergence for the solutions to the regularized problem are addressed, and a continuation strategy based on a model function is proposed. Numerical examples for a convection-diffusion...

Minimal invasion: An optimal L state constraint problem

Christian Clason, Kazufumi Ito, Karl Kunisch (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization...

Minimal invasion: An optimal L∞ state constraint problem

Christian Clason, Kazufumi Ito, Karl Kunisch (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is...

Analysis of a time optimal control problem related to the management of a bioreactor

Lino J. Alvarez-Vázquez, Francisco J. Fernández, Aurea Martínez (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence...

On the optimal control of coefficients in elliptic problems. Application to the optimization of the head slider

Ionel Ciuperca, Mohamed El Alaoui Talibi, Mohammed Jai (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider an optimal control problem for a class of non-linear elliptic equations. A result of existence and uniqueness of the state equation is proven under weaker hypotheses than in the literature. We also prove the existence of an optimal control. Applications to some lubrication problems and numerical results are given.

How humans fly

Alain Ajami, Jean-Paul Gauthier, Thibault Maillot, Ulysse Serres (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper is devoted to the general problem of reconstructing the cost from the observation of trajectories, in a problem of optimal control. It is motivated by the following applied problem, concerning HALE drones: one would like them to decide by themselves for their trajectories, and to behave at least as a good human pilot. This applied question is very similar to the problem of determining what is minimized in human locomotion. These starting points are the reasons for the particular...

Some Applications of Optimal Control Theory of Distributed Systems

Alfredo Bermudez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

The SQP method for control constrained optimal control of the Burgers equation

Fredi Tröltzsch, Stefan Volkwein (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical...