Displaying similar documents to “Mathematical Models of Dividing Cell Populations: Application to CFSE Data”

Multi-scale Modelling for Threshold Dependent Differentiation

A. Q. Cai, Y. Peng, J. Wells, X. Dai, Q. Nie (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

The maintenance of a stable stem cell population in the epidermis is important for robust regeneration of the stratified epithelium. The population size is usually regulated by cell secreted extracellular signalling molecules as well as intracellular molecules. In this paper, a simple model incorporating both levels of regulation is developed to examine the balance between growth and differentiation for the stem cell population. In particular, the dynamics of a known differentiation regulator...

Optimisation of time-scheduled regimen for anti-cancer drug infusion

Claude Basdevant, Jean Clairambault, Francis Lévi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control...

Mathematical modeling of the competition between acquired immunity and cancer

Mikhail Kolev (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper we propose and analyse a model of the competition between cancer and the acquired immune system. The model is a system of integro-differential bilinear equations. The role of the humoral response is analyzed. The simulations are related to the immunotherapy of tumors with antibodies.