Displaying similar documents to “Observations Regarding Algorithms Required for Robust CFD Codes”

Time-dependent numerical modeling of large-scale astrophysical processes: from relatively smooth flows to explosive events with extremely large discontinuities and high Mach numbers

Petr Kurfürst, Jiří Krtička (2017)

Applications of Mathematics

Similarity:

We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically...

Modelling of natural convection flows with large temperature differences : a benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference

Henri Paillère, Patrick Le Quéré, Catherine Weisman, Jan Vierendeels, Erik Dick, Malte Braack, Frédéric Dabbene, Alberto Beccantini, Etienne Studer, Thibaud Kloczko, Christophe Corre, Vincent Heuveline, Masoud Darbandi, Seyed Farid Hosseinizadeh (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In the second part of the paper, we compare the solutions produced in the framework of the conference “Mathematical and numerical aspects of low Mach number flows” organized by INRIA and MAB in Porquerolles, June 2004, to the reference solutions described in Part 1. We make some recommendations on how to produce good quality solutions, and list a number of pitfalls to be avoided.

Cerebral blood flow simulations in realistic geometries

Stéphanie Salmon, Soyibou Sy, Marcela Szopos (2012)

ESAIM: Proceedings

Similarity:

The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes.

Different boundary conditions for LES solver Palm 6.0 used for ABL in tunnel experiment

Řezníček, Hynek, Geletič, Jan, Bureš, Martin, Krč, Pavel, Resler, Jaroslav, Vrbová, Kateřina, Trush, Arsenii, Michálek, Petr, Beneš, Luděk, Sühring, Matthias

Similarity:

We tried to reproduce results measured in the wind tunnel experiment with a CFD simulation provided by numerical model PALM. A realistic buildings layout from the Prague-Dejvice quarter has been chosen as a testing domain because solid validation campaign for PALM simulation of Atmospheric Boundary Layer (ABL) over this quarter was documented in the past. The question of input data needed for such simulation and capability of the model to capture correctly the inlet profile and its...

Vorticity dynamics and turbulence models for large-Eddy simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and...

Medical image – based computational model of pulsatile flow in saccular aneurisms

Stéphanie Salmon, Marc Thiriet, Jean-Frédéric Gerbeau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Saccular aneurisms, swelling of a blood vessel, are investigated in order (i) to estimate the development risk of the wall lesion, before and after intravascular treatment, assuming that the pressure is the major factor, and (ii) to better plan medical interventions. Numerical simulations, using the finite element method, are performed in three-dimensional aneurisms. Computational meshes are derived from medical imaging data to take into account both between-subject and within-subject anatomical...