Modelling of natural convection flows with large temperature differences : a benchmark problem for low Mach number solvers. Part 1. Reference solutions
Patrick Le Quéré; Catherine Weisman; Henri Paillère[1]; Jan Vierendeels[2]; Erik Dick; Roland Becker[3]; Malte Braack[3]; James Locke[4]
- [1] CEA Saclay, DEN/DM2S/SFME,91191 Gif-sur-Yvette Cedex, France.
- [2] Ghent University, 9000 Gent, Belgium. ; ; Ghent University, B-9000 Gent, Belgium.
- [3] Heidelberg University, Germany
- [4] U. Warwick and British Energy Generation Ltd.
- Volume: 39, Issue: 3, page 609-616
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Becker, M. Braack and R. Rannacher, Numerical simulation of laminar flames at low Mach number with adaptive finite elements. Combustion Theory and Modelling, Bristol 3 (1999) 503–534. Zbl0951.76035
- [2] R. Becker, M. Braack, Solution of a stationary benchmark problem for natural convection with high temperature difference. Int. J. Thermal Sci. 41 (2002) 428–439.
- [3] D.R. Chenoweth and S. Paolucci, Natural Convection in an enclosed vertical air layer with large horizontal temperature differences. J. Fluid Mech. 169 (1986) 173–210. Zbl0623.76097
- [4] G. de Vahl Davis, Natural convection of air in a square cavity: a benchmark solution. Int. J. Numer. Methods Fluids 3 (1983) 249–264. Zbl0538.76075
- [5] G. de Vahl Davis and I.P. Jones, Natural convection of air in a square cavity: a comparison exercice. Int. J. Numer. Methods Fluids 3 (1983) 227–248. Zbl0538.76076
- [6] FEAT User Guide, Finite Element Analysis Toolbox, British Energy, Gloucester, UK (1997).
- [7] D.D. Gray and A. Giorgini, The Validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transfer 15 (1976) 545–551. Zbl0328.76066
- [8] P. Le Quéré, Accurate solutions to the square differentially heated cavity at high Rayleigh number. Comput. Fluids 20 (1991) 19–41. Zbl0731.76054
- [9] P. Le Quéré, R. Masson and P. Perrot, A Chebyshev collocation algorithm for 2D Non-Boussinesq convection. J. Comput. Phys. 103 (1992) 320–335. Zbl0763.76061
- [10] W.L. Oberkampf and T. Trucano, Verification and validation in Computational Fluid Dynamics. Sandia National Laboratories report SAND2002-0529 (2002).
- [11] H. Paillère and P. Le Quéré, Modelling and simulation of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers, 12th Séminaire de Mécanique des Fluides Numérique, CEA Saclay, France, 25–26 Jan., 2000.
- [12] S. Paolucci, On the filtering of sound from the Navier-Stokes equations. Sandia National Laboratories report SAND82-8257 (1982).
- [13] J.C. Patterson and J. Imberger, Unsteady natural convection in a rectangular cavity. J. Fluid Mech. 100 (1980) 65–86. Zbl0433.76071
- [14] V.L. Polezhaev, Numerical solution of the system of two-dimensional unsteady Navier-Stokes equations for a compressible gas in a closed region. Fluid Dyn. 2 (1967) 70–74. Zbl0233.76163
- [15] J. Vierendeels, K. Riemslagh and E. Dick, A Multigrid semi-implicit line-method for viscous incompressible and low-Mach number flows on high aspect ratio grids. J. Comput. Phys. 154 (1999) 310–341. Zbl0955.76067