Displaying similar documents to “Some Parameter Estimation Issues in Functional-Structural Plant Modelling”

Identification of parametric models with a priori knowledge of process properties

Krzysztof B. Janiszowski, Paweł Wnuk (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

An approach to estimation of a parametric discrete-time model of a process in the case of some a priori knowledge of the investigated process properties is presented. The knowledge of plant properties is introduced in the form of linear bounds, which can be determined for the coefficient vector of the parametric model studied. The approach yields special biased estimation of model coefficients that preserves demanded properties. A formula for estimation of the model coefficients is derived...

Variance function estimation via model selection

Teresa Ledwina, Jan Mielniczuk (2010)

Applicationes Mathematicae

Similarity:

The problem of estimating an unknown variance function in a random design Gaussian heteroscedastic regression model is considered. Both the regression function and the logarithm of the variance function are modelled by piecewise polynomials. A finite collection of such parametric models based on a family of partitions of support of an explanatory variable is studied. Penalized model selection criteria as well as post-model-selection estimates are introduced based on Maximum Likelihood...

Modified minimax quadratic estimation of variance components

Viktor Witkovský (1998)

Kybernetika

Similarity:

The paper deals with modified minimax quadratic estimation of variance and covariance components under full ellipsoidal restrictions. Based on the, so called, linear approach to estimation variance components, i. e. considering useful local transformation of the original model, we can directly adopt the results from the linear theory. Under normality assumption we can can derive the explicit form of the estimator which is formally find to be the Kuks–Olman type estimator.

Unbiased risk estimation method for covariance estimation

Hélène Lescornel, Jean-Michel Loubes, Claudie Chabriac (2014)

ESAIM: Probability and Statistics

Similarity:

We consider a model selection estimator of the covariance of a random process. Using the Unbiased Risk Estimation (U.R.E.) method, we build an estimator of the risk which allows to select an estimator in a collection of models. Then, we present an oracle inequality which ensures that the risk of the selected estimator is close to the risk of the oracle. Simulations show the efficiency of this methodology.

Robust m-estimator of parameters in variance components model

Roman Zmyślony, Stefan Zontek (2002)

Discussiones Mathematicae Probability and Statistics

Similarity:

It is shown that a method of robust estimation in a two way crossed classification mixed model, recently proposed by Bednarski and Zontek (1996), can be extended to a more general case of variance components model with commutative a covariance matrices.

On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy

Jurjen Duintjer Tebbens, Ctirad Matonoha, Andreas Matthios, Štěpán Papáček (2019)

Applications of Mathematics

Similarity:

A pharmacodynamic model introduced earlier in the literature for in silico prediction of rifampicin-induced CYP3A4 enzyme production is described and some aspects of the involved curve-fitting based parameter estimation are discussed. Validation with our own laboratory data shows that the quality of the fit is particularly sensitive with respect to an unknown parameter representing the concentration of the nuclear receptor PXR (pregnane X receptor). A detailed analysis of the influence...