The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “α-time fractional Brownian motion: PDE connections and local times∗”

α-time fractional brownian motion: PDE connections and local times

Erkan Nane, Dongsheng Wu, Yimin Xiao (2012)

ESAIM: Probability and Statistics

Similarity:

For 0 <  ≤ 2 and 0 <  < 1, an -time fractional Brownian motion is an iterated process  =  {() = (()) ≥ 0}  obtained by taking a fractional Brownian motion  {() ∈ ℝ} with Hurst index 0 <  < 1 and replacing the time parameter with a strictly -stable Lévy process {() ≥ 0} in ℝ independent of {() ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when is a stable subordinator, can arise as scaling limit...

Density of paths of iterated Lévy transforms of brownian motion

Marc Malric (2012)

ESAIM: Probability and Statistics

Similarity:

The Lévy transform of a Brownian motion is the Brownian motion given by = sgn()d; call the Brownian motion obtained from by iterating times this transformation. We establish that almost surely, the sequence of paths ( → ) is dense in Wiener space, for the topology of uniform convergence on compact time intervals.

Density of paths of iterated Lévy transforms of Brownian motion

Marc Malric (2012)

ESAIM: Probability and Statistics

Similarity:

The Lévy transform of a Brownian motion is the Brownian motion given by = sgn()d; call the Brownian motion obtained from by iterating times this transformation. We establish that almost surely, the sequence of paths ( → ) is dense in Wiener space, for the topology of uniform...

Wiener integral for the coordinate process under the σ-finite measure unifying brownian penalisations

Kouji Yano (2011)

ESAIM: Probability and Statistics

Similarity:

Wiener integral for the coordinate process is defined under the -finite measure unifying Brownian penalisations, which has been introduced by [Najnudel , 345 (2007) 459–466] and [Najnudel , 19. Mathematical Society of Japan, Tokyo (2009)]. Its decomposition before and after last exit time from 0 is studied. This study prepares for the author's recent study [K. Yano, 258 (2010) 3492–3516] of Cameron-Martin formula for the -finite measure.

Densité des orbites des trajectoires browniennes sous l’action de la transformation de Lévy

Jean Brossard, Christophe Leuridan (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let be a measurable transformation of a probability space ( E , , π ) , preserving the measure. Let be a random variable with law . Call (⋅, ⋅) a regular version of the conditional law of given (). Fix B . We first prove that if is reachable from -almost every point for a Markov chain of kernel , then the -orbit of -almost every point visits . We then apply this result to the Lévy transform, which transforms the Brownian motion into the Brownian motion || − , where is the local time at 0...

Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations

Luís Balsa Bicho, António Ornelas (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We prove of vector minimizers () =  (||) to multiple integrals ∫ ((), |()|)  on a  ⊂ ℝ, among the Sobolev functions (·) in + (, ℝ), using a  : ℝ×ℝ → [0,∞] with (·) and . Besides such basic hypotheses, (·,·) is assumed to satisfy also...

Hydrodynamic limit of a d-dimensional exclusion process with conductances

Fábio Júlio Valentim (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Fix a polynomial of the form () = + ∑2≤≤    =1 with (1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on 𝕋 d , with conductances given by special class of functions, is described by the unique weak solution of the non-linear parabolic partial differential equation = ∑    ...

Means in complete manifolds: uniqueness and approximation

Marc Arnaudon, Laurent Miclo (2014)

ESAIM: Probability and Statistics

Similarity:

Let be a complete Riemannian manifold,  ∈ ℕ and  ≥ 1. We prove that almost everywhere on  = ( ,, ) ∈  for Lebesgue measure in , the measure μ ( x ) = N k = 1 N x k μ ( x ) = 1 N ∑ k = 1 N δ x k has a unique–mean (). As a consequence, if  = ( ,, ) is a -valued random variable with absolutely continuous law, then almost surely (()) has a unique –mean. In particular if ( ...

Hereditary properties of words

József Balogh, Béla Bollobás (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

Let be a hereditary property of words, , an infinite class of finite words such that every subword (block) of a word belonging to is also in . Extending the classical Morse-Hedlund theorem, we show that either contains at least words of length for every  or, for some , it contains at most words of length for every . More importantly, we prove the following quantitative extension of this result: if has words of length then, for every , it contains at most ⌈( + 1)/2⌉⌈( + 1)/2⌈...