The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Commutativity conditions on derivations and Lie ideals in σ -prime rings.”

Lie ideals in prime Γ-rings with derivations

Nishteman N. Suliman, Abdul-Rahman H. Majeed (2013)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let M be a 2 and 3-torsion free prime Γ-ring, d a nonzero derivation on M and U a nonzero Lie ideal of M. In this paper it is proved that U is a central Lie ideal of M if d satisfies one of the following (i) d(U)⊂ Z, (ii) d(U)⊂ U and d²(U)=0, (iii) d(U)⊂ U, d²(U)⊂ Z.

Prime and semiprime rings with symmetric skew n-derivations

Ajda Fošner (2014)

Colloquium Mathematicae

Similarity:

Let n ≥ 3 be a positive integer. We study symmetric skew n-derivations of prime and semiprime rings and prove that under some certain conditions a prime ring with a nonzero symmetric skew n-derivation has to be commutative.

Some results of reverse derivation on prime and semiprime Γ-rings

Neshtiman Nooraldeen Suliman (2015)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

In the present paper, it is introduced the definition of a reverse derivation on a Γ-ring M. It is shown that a mapping derivation on a semiprime Γ-ring M is central if and only if it is reverse derivation. Also it is shown that M is commutative if for all a,b ∈ I (I is an ideal of M) satisfying d(a) ∈ Z(M), and d(a ∘ b) = 0.