The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence and multiplicity of solutions for a periodic Hill's equation with parametric dependence and singularities.”

On the existence of one-signed periodic solutions of some differential equations of second order

Jan Ligęza (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

We study the existence of one-signed periodic solutions of the equations x ' ' ( t ) - a 2 ( t ) x ( t ) + μ f ( t , x ( t ) , x ' ( t ) ) = 0 , x ' ' ( t ) + a 2 ( t ) x ( t ) = μ f ( t , x ( t ) , x ' ( t ) ) , where μ > 0 , a : ( - , + ) ( 0 , ) is continuous and 1-periodic, f is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.

Unbounded solutions of BVP for second order ODE with p -Laplacian on the half line

Yuji Liu, Patricia J. Y. Wong (2013)

Applications of Mathematics

Similarity:

By applying the Leggett-Williams fixed point theorem in a suitably constructed cone, we obtain the existence of at least three unbounded positive solutions for a boundary value problem on the half line. Our result improves and complements some of the work in the literature.