Displaying similar documents to “Robust filtering for state and fault estimation of linear stochastic systems with unknown disturbance.”

Novel optimal recursive filter for state and fault estimation of linear stochastic systems with unknown disturbances

Karim Khémiri, Fayçal Ben Hmida, José Ragot, Moncef Gossa (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper studies recursive optimal filtering as well as robust fault and state estimation for linear stochastic systems with unknown disturbances. It proposes a new recursive optimal filter structure with transformation of the original system. This transformation is based on the singular value decomposition of the direct feedthrough matrix distribution of the fault which is assumed to be of arbitrary rank. The resulting filter is optimal in the sense of the unbiased minimum-variance...

A mixed active and passive GLR test for a fault tolerant control system

Hicham Jamouli, Mohamed Amine El Hail, Dominique Sauter (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents an adaptive Generalized Likelihood Ratio (GLR) test for multiple Faults Detection and Isolation (FDI) in stochastic linear dynamic systems. Based on the work of Willsky and Jones (1976), we propose a modified generalized likelihood ratio test, allowing detection, isolation and estimation of multiple sequential faults. Our contribution aims to maximise the good decision rate of fault detection using another updating strategy. This is based on a reference model updated...

Simultaneous state and parameter estimation based actuator fault detection and diagnosis for an unmanned helicopter

Chong Wu, Juntong Qi, Dalei Song, Xin Qi, Jianda Han (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

Simultaneous state and parameter estimation based actuator fault detection and diagnosis (FDD) for single-rotor unmanned helicopters (UHs) is investigated in this paper. A literature review of actuator FDD for UHs is given firstly. Based on actuator healthy coefficients (AHCs), which are introduced to represent actuator faults, a combined dynamic model is established with the augmented state containing both the flight state and AHCs. Then the actuator fault detection and diagnosis problem...

Fault diagnosis in a networked control system under communication constraints: a quadrotor application

Karim Chabir, Mohamed Amine Sid, Dominique Sauter (2014)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper considers the problem of attitude sensor fault diagnosis in a quadrotor helicopter. The proposed approach is composed of two stages. The first one is the modelling of the system attitude dynamics taking into account the induced communication constraints. Then a robust fault detection and evaluation scheme is proposed using a post-filter designed under a particular design objective. This approach is compared with previous results based on the standard Kalman filter and gives...

Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies

Vicenç Puig (2010)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval models). These methods aims at checking the consistency between observed and predicted behaviour by using simple sets to approximate the exact set of possible behaviour (in the parameter or the state space). When an inconsistency is detected between the measured...

Actuator fault diagnosis for flat systems: A constraint satisfaction approach

Ramatou Seydou, Tarek Raissi, Ali Zolghadri, Denis Efimov (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper describes a robust set-membership-based Fault Detection and Isolation (FDI) technique for a particular class of nonlinear systems, the so-called flat systems. The proposed strategy consists in checking if the expected input value belongs to an estimated feasible set computed using the system model and the derivatives of the measured output vector. The output derivatives are computed using a numerical differentiator. The set-membership estimator design for the input vector...

Robust multisensor fault tolerant model-following MPC design for constrained systems

Alain Yetendje, Maria M. Seron, José A. De Doná (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, a robust fault-tolerant control strategy for constrained multisensor linear systems, subject to sensor faults and in the presence of bounded state and output disturbances, is proposed. The scheme verifies that, for each sensors-estimator combination, suitable residual variables lie inside pre-computed sets and selects a more appropriate combination based on a chosen criterion. An active fault tolerant output feedback controller yields an MPC-based control law and, by means...

Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: application to an anaerobic bioreactor

Francisco-Ronay López-Estrada, Jean-Christophe Ponsart, Didier Theilliol, Carlos-Manuel Astorga-Zaragoza, Jorge-Luis Camas-Anzueto (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper addresses the design of a state estimation and sensor fault detection, isolation and fault estimation observer for descriptor-linear parameter varying (D-LPV) systems. In contrast to where the scheduling functions depend on some measurable time varying state, the proposed method considers the scheduling function depending on an unmeasurable state vector. In order to isolate, detect and estimate sensor faults, an augmented system is constructed by considering faults to be auxiliary...

Active fault tolerant control of nonlinear systems: The cart-pole example

Marcello Bonfè, Paolo Castaldi, Nicola Mimmo, Silvio Simani (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper describes the design of fault diagnosis and active fault tolerant control schemes that can be developed for nonlinear systems. The methodology is based on a fault detection and diagnosis procedure relying on adaptive filters designed via the nonlinear geometric approach, which allows obtaining the disturbance de-coupling property. The controller reconfiguration exploits directly the on-line estimate of the fault signal. The classical model of an inverted pendulum on a cart...