The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Rainbow Hamiltonian paths and canonically colored subgraphs in infinite complete graphs.”

Paths through fixed vertices in edge-colored graphs

W. S. Chou, Y. Manoussakis, O. Megalakaki, M. Spyratos, Zs. Tuza (1994)

Mathématiques et Sciences Humaines

Similarity:

We study the problem of finding an alternating path having given endpoints and passing through a given set of vertices in edge-colored graphs (a path is alternating if any two consecutive edges are in different colors). In particular, we show that this problem in NP-complete for 2-edge-colored graphs. Then we give a polynomial characterization when we restrict ourselves to 2-edge-colored complete graphs. We also investigate on (s,t)-paths through fixed vertices, i.e. paths of length...

Rainbow Connection Number of Graphs with Diameter 3

Hengzhe Li, Xueliang Li, Yuefang Sun (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let f(d) denote the minimum number such that rc(G) ≤ f(d) for each bridgeless graph G with diameter d. In this paper, we shall show that 7 ≤ f(3) ≤ 9.

Vertex-distinguishing edge-colorings of linear forests

Sylwia Cichacz, Jakub Przybyło (2010)

Discussiones Mathematicae Graph Theory

Similarity:

In the PhD thesis by Burris (Memphis (1993)), a conjecture was made concerning the number of colors c(G) required to edge-color a simple graph G so that no two distinct vertices are incident to the same multiset of colors. We find the exact value of c(G) - the irregular coloring number, and hence verify the conjecture when G is a vertex-disjoint union of paths. We also investigate the point-distinguishing chromatic index, χ₀(G), where sets, instead of multisets, are required to be distinct,...

A Note on Neighbor Expanded Sum Distinguishing Index

Evelyne Flandrin, Hao Li, Antoni Marczyk, Jean-François Saclé, Mariusz Woźniak (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.

Worm Colorings

Wayne Goddard, Kirsti Wash, Honghai Xu (2015)

Discussiones Mathematicae Graph Theory

Similarity:

Given a coloring of the vertices, we say subgraph H is monochromatic if every vertex of H is assigned the same color, and rainbow if no pair of vertices of H are assigned the same color. Given a graph G and a graph F, we define an F-WORM coloring of G as a coloring of the vertices of G without a rainbow or monochromatic subgraph H isomorphic to F. We present some results on this concept especially as regards to the existence, complexity, and optimization within certain graph classes....

Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six

Yuehua Bu, Ko-Wei Lih, Weifan Wang (2011)

Discussiones Mathematicae Graph Theory

Similarity:

An adjacent vertex distinguishing edge-coloring of a graph G is a proper edge-coloring o G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring of G is denoted by χ'ₐ(G). We prove that χ'ₐ(G) is at most the maximum degree plus 2 if G is a planar graph without isolated edges whose girth is at least 6. This gives new evidence to a conjecture proposed in [Z. Zhang, L. Liu,...

A decomposition of gallai multigraphs

Alexander Halperin, Colton Magnant, Kyle Pula (2014)

Discussiones Mathematicae Graph Theory

Similarity:

An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed...