Homogeneous Einstein metrics on flag manifolds.
Sakane, Y. (1999)
Lobachevskii Journal of Mathematics
Similarity:
Sakane, Y. (1999)
Lobachevskii Journal of Mathematics
Similarity:
Jan Hubička, Matěj Konečný, Jaroslav Nešetřil (2019)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We present a short and self-contained proof of the extension property for partial isometries of the class of all finite metric spaces.
Shaikh, A.A., Arslan, K., Murathan, C., Baishya, K.K. (2007)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Stefan Bergman (1967)
Colloquium Mathematicae
Similarity:
Eugene D. Rodionov (1991)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We prove that there is exactly one homothety class of invariant Einstein metrics in each space defined below.
Andreas Arvanitoyeorgos (1996)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A Stiefel manifold is the set of orthonormal -frames in , and it is diffeomorphic to the homogeneous space . We study -invariant Einstein metrics on this space. We determine when the standard metric on is Einstein, and we give an explicit solution to the Einstein equation for the space .
Vershik, A.M. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity: