Displaying similar documents to “Rotation methods in operator ergodic theory.”

Spectral density estimation for stationary stable random fields

Rachid Sabre (1995)

Applicationes Mathematicae


We consider a stationary symmetric stable bidimensional process with discrete time, having the spectral representation (1.1). We consider a general case where the spectral measure is assumed to be the sum of an absolutely continuous measure, a discrete measure of finite order and a finite number of absolutely continuous measures on several lines. We estimate the density of the absolutely continuous measure and the density on the lines.

On the spectral properties of translation operators in one-dimensional tubes

Wojciech Hyb (1991)

Annales Polonici Mathematici


We study the spectral properties of some group of unitary operators in the Hilbert space of square Lebesgue integrable holomorphic functions on a one-dimensional tube (see formula (1)). Applying the Genchev transform ([2], [5]) we prove that this group has continuous simple spectrum (Theorem 4) and that the projection-valued measure for this group has a very explicit form (Theorem 5).

On convolution operators with small support which are far from being convolution by a bounded measure

Edmond Granirer (1994)

Colloquium Mathematicae


Let C V p ( F ) be the left convolution operators on L p ( G ) with support included in F and M p ( F ) denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that C V p ( F ) , C V p ( F ) / M p ( F ) and C V p ( F ) / W are as big as they can be, namely have l as a quotient, where the ergodic space W contains, and at times is very big relative to M p ( F ) . Other subspaces of C V p ( F ) are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.