Displaying similar documents to “Rationally connected foliations on surfaces.”

Chern numbers of a Kupka component

Omegar Calvo-Andrade, Marcio G. Soares (1994)

Annales de l'institut Fourier

Similarity:

We will consider codimension one holomorphic foliations represented by sections ω H 0 ( n , Ω 1 ( k ) ) , and having a compact Kupka component K . We show that the Chern classes of the tangent bundle of K behave like Chern classes of a complete intersection 0 and, as a corollary we prove that K is a complete intersection in some cases.

Characteristic homomorphism for ( F 1 , F 2 ) -foliated bundles over subfoliated manifolds

José Manuel Carballés (1984)

Annales de l'institut Fourier

Similarity:

In this paper a construction of characteristic classes for a subfoliation ( F 1 , F 2 ) is given by using Kamber-Tondeur’s techniques. For this purpose, the notion of ( F 1 , F 2 ) -foliated principal bundle, and the definition of its associated characteristic homomorphism, are introduced. The relation with the characteristic homomorphism of F i -foliated bundles, i = 1 , 2 , the results of Kamber-Tondeur on the cohomology of g - D G -algebras. Finally, Goldman’s results on the restriction of foliated bundles to the leaves of...