Displaying similar documents to “Matrix generators for the Harada-Norton group.”

Condition numbers of Hessenberg companion matrices

Michael Cox, Kevin N. Vander Meulen, Adam Van Tuyl, Joseph Voskamp (2024)

Czechoslovak Mathematical Journal

Similarity:

The Fiedler matrices are a large class of companion matrices that include the well-known Frobenius companion matrix. The Fiedler matrices are part of a larger class of companion matrices that can be characterized by a Hessenberg form. We demonstrate that the Hessenberg form of the Fiedler companion matrices provides a straight-forward way to compare the condition numbers of these matrices. We also show that there are other companion matrices which can provide a much smaller condition...

Factorizations for q-Pascal matrices of two variables

Thomas Ernst (2015)

Special Matrices

Similarity:

In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]

Studying the various properties of MIN and MAX matrices - elementary vs. more advanced methods

Mika Mattila, Pentti Haukkanen (2016)

Special Matrices

Similarity:

Let T = {z1, z2, . . . , zn} be a finite multiset of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn. The purpose of this article is to study the different properties of MIN and MAX matrices of the set T with min(zi , zj) and max(zi , zj) as their ij entries, respectively.We are going to do this by interpreting these matrices as so-called meet and join matrices and by applying some known results for meet and join matrices. Once the theorems are found with the aid of advanced methods, we also...

Determinant and Inverse of Matrices of Real Elements

Nobuyuki Tamura, Yatsuka Nakamura (2007)

Formalized Mathematics

Similarity:

In this paper the classic theory of matrices of real elements (see e.g. [12], [13]) is developed. We prove selected equations that have been proved previously for matrices of field elements. Similarly, we introduce in this special context the determinant of a matrix, the identity and zero matrices, and the inverse matrix. The new concept discussed in the case of matrices of real numbers is the property of matrices as operators acting on finite sequences of real numbers from both sides....

Characterization of α1 and α2-matrices

Rafael Bru, Ljiljana Cvetković, Vladimir Kostić, Francisco Pedroche (2010)

Open Mathematics

Similarity:

This paper deals with some properties of α1-matrices and α2-matrices which are subclasses of nonsingular H-matrices. In particular, new characterizations of these two subclasses are given, and then used for proving algebraic properties related to subdirect sums and Hadamard products.

Complete solution of tropical vector inequalities using matrix sparsification

Nikolai Krivulin (2020)

Applications of Mathematics

Similarity:

We examine the problem of finding all solutions of two-sided vector inequalities given in the tropical algebra setting, where the unknown vector multiplied by known matrices appears on both sides of the inequality. We offer a solution that uses sparse matrices to simplify the problem and to construct a family of solution sets, each defined by a sparse matrix obtained from one of the given matrices by setting some of its entries to zero. All solutions are then combined to present the...

Nonsingularity and P -matrices.

Jiří Rohn (1990)

Aplikace matematiky

Similarity:

New proofs of two previously published theorems relating nonsingularity of interval matrices to P -matrices are given.