The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a class of generalized quasi-Einstein manifolds.”

Harmonic morphisms between riemannian manifolds

Bent Fuglede (1978)

Annales de l'institut Fourier

Similarity:

A harmonic morphism f : M N between Riemannian manifolds M and N is by definition a continuous mappings which pulls back harmonic functions. It is assumed that dim M dim N , since otherwise every harmonic morphism is constant. It is shown that a harmonic morphism is the same as a harmonic mapping in the sense of Eells and Sampson with the further property of being semiconformal, that is, a conformal submersion of the points where d f vanishes. Every non-constant harmonic morphism is shown to be...

A curvature identity on a 6-dimensional Riemannian manifold and its applications

Yunhee Euh, Jeong Hyeong Park, Kouei Sekigawa (2017)

Czechoslovak Mathematical Journal

Similarity:

We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold “a harmonic manifold is locally symmetric” and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional...