The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the existence of triangle with given angle and opposite angle bisectors length.”

Circumcenter, Circumcircle and Centroid of a Triangle

Roland Coghetto (2016)

Formalized Mathematics

Similarity:

We introduce, using the Mizar system [1], some basic concepts of Euclidean geometry: the half length and the midpoint of a segment, the perpendicular bisector of a segment, the medians (the cevians that join the vertices of a triangle to the midpoints of the opposite sides) of a triangle. We prove the existence and uniqueness of the circumcenter of a triangle (the intersection of the three perpendicular bisectors of the sides of the triangle). The extended law of sines and the formula...

Altitude, Orthocenter of a Triangle and Triangulation

Roland Coghetto (2016)

Formalized Mathematics

Similarity:

We introduce the altitudes of a triangle (the cevians perpendicular to the opposite sides). Using the generalized Ceva’s Theorem, we prove the existence and uniqueness of the orthocenter of a triangle [7]. Finally, we formalize in Mizar [1] some formulas [2] to calculate distance using triangulation.

Some Facts about Trigonometry and Euclidean Geometry

Roland Coghetto (2014)

Formalized Mathematics

Similarity:

We calculate the values of the trigonometric functions for angles: [XXX] , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by...