A simplified formula for calculation of metric dimension of converging sequences
Tibor Žáčik, Ladislav Mišík (2005)
Mathematica Slovaca
Similarity:
Tibor Žáčik, Ladislav Mišík (2005)
Mathematica Slovaca
Similarity:
Tibor Žáčik (1992)
Mathematica Slovaca
Similarity:
P. Elliott (1967)
Acta Arithmetica
Similarity:
Ladislav, Jr. Mišík, Tibor Žáčik (1999)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Converging sequences in metric space have Hausdorff dimension zero, but their metric dimension (limit capacity, entropy dimension, box-counting dimension, Hausdorff dimension, Kolmogorov dimension, Minkowski dimension, Bouligand dimension, respectively) can be positive. Dimensions of such sequences are calculated using a different approach for each type. In this paper, a rather simple formula for (lower, upper) metric dimension of any sequence given by a differentiable convex function,...
Xuan, Tizuo (1989)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Lev, Vsevolod F., Yuster, Raphael (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity: