Displaying similar documents to “A conjugate gradient method for unconstrained optimization problems.”

Convergence analysis of adaptive trust region methods

Zhen-Jun Shi, Xiang-Sun Zhang, Jie Shen (2007)

RAIRO - Operations Research

Similarity:

In this paper, we propose a new class of adaptive trust region methods for unconstrained optimization problems and develop some convergence properties. In the new algorithms, we use the current iterative information to define a suitable initial trust region radius at each iteration. The initial trust region radius is more reasonable in the sense that the trust region model and the objective function are more consistent at the current iterate. The global convergence, super-linear and...

A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration

Zainab Hassan Ahmed, Mohamed Hbaib, Khalil K. Abbo (2024)

Applications of Mathematics

Similarity:

The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms...

A self-adaptive trust region method for the extended linear complementarity problems

Zhensheng Yu, Qiang Li (2009)

Applications of Mathematics

Similarity:

By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established...