Boundary behaviour for p harmonic functions in Lipschitz and starlike Lipschitz ring domains
John L. Lewis, Kaj Nyström (2007)
Annales scientifiques de l'École Normale Supérieure
Similarity:
John L. Lewis, Kaj Nyström (2007)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Alano Ancona (1998)
Publicacions Matemàtiques
Similarity:
Let L be a symmetric second order uniformly elliptic operator in divergence form acting in a bounded Lipschitz domain Ω of R and having Lipschitz coefficients in Ω. It is shown that the Rellich formula with respect to Ω and L extends to all functions in the domain D = {u ∈ H (Ω); L(u) ∈ L(Ω)} of L. This answers a question of A. Chaïra and G. Lebeau.
Carlos E. Kenig (1984-1985)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Björn E. J. Dahlberg, C. E. Kenig, G. C. Verchota (1986)
Annales de l'institut Fourier
Similarity:
In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator , on an arbitrary bounded Lipschitz domain in . We establish existence and uniqueness results when the boundary values have first derivatives in , and the normal derivative is in . The resulting solution takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of is shown to be in .
Pavel Doktor (1976)
Časopis pro pěstování matematiky
Similarity:
Carlos E. Kenig (1983-1984)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Papi, Marco (2005)
Journal of Inequalities and Applications [electronic only]
Similarity: