Boundary behaviour for p harmonic functions in Lipschitz and starlike Lipschitz ring domains
John L. Lewis, Kaj Nyström (2007)
Annales scientifiques de l'École Normale Supérieure
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
John L. Lewis, Kaj Nyström (2007)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Alano Ancona (1998)
Publicacions Matemàtiques
Similarity:
Let L be a symmetric second order uniformly elliptic operator in divergence form acting in a bounded Lipschitz domain Ω of R and having Lipschitz coefficients in Ω. It is shown that the Rellich formula with respect to Ω and L extends to all functions in the domain D = {u ∈ H (Ω); L(u) ∈ L(Ω)} of L. This answers a question of A. Chaïra and G. Lebeau.
Carlos E. Kenig (1984-1985)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Björn E. J. Dahlberg, C. E. Kenig, G. C. Verchota (1986)
Annales de l'institut Fourier
Similarity:
In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator , on an arbitrary bounded Lipschitz domain in . We establish existence and uniqueness results when the boundary values have first derivatives in , and the normal derivative is in . The resulting solution takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of is shown to be in .
Pavel Doktor (1976)
Časopis pro pěstování matematiky
Similarity:
Carlos E. Kenig (1983-1984)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Papi, Marco (2005)
Journal of Inequalities and Applications [electronic only]
Similarity: