About Riesz transforms on the Heisenberg groups.
D. Müller, T. Coulhon, J. Zienkiewicz (1996)
Mathematische Annalen
Similarity:
D. Müller, T. Coulhon, J. Zienkiewicz (1996)
Mathematische Annalen
Similarity:
Sarikaya, Mehmet Zeki, Yildirim, Hüseyin (2007)
Journal of Inequalities and Applications [electronic only]
Similarity:
Guliyev, Emin (2009)
Fractional Calculus and Applied Analysis
Similarity:
Mathematics Subject Classification: Primary 42B20, 42B25, 42B35 In this paper we study the Riesz potentials (B-Riesz potentials) generated by the Laplace-Bessel differential operator ∆B [...]. We establish an inequality of Stein-Weiss type for the B-Riesz potentials in the limiting case, and obtain the boundedness of the B-Riesz potential operator from the space Lp,|x|β,γ to BMO|x|−λ,γ. * Emin Guliyev’s research partially supported by the grant of INTAS YS Collaborative...
Tomica Divnić, Zlata Đurić (2000)
Kragujevac Journal of Mathematics
Similarity:
Walid Nefzi (2019)
Czechoslovak Mathematical Journal
Similarity:
The aim of this paper is to extend the study of Riesz transforms associated to Dunkl Ornstein-Uhlenbeck operator considered by A. Nowak, L. Roncal and K. Stempak to higher order.
Walter R. Bloom, Xu Zengfu (1994)
Mathematische Zeitschrift
Similarity:
Liliana Forzani, Roberto Scotto, Wilfredo Urbina (2001)
Séminaire de probabilités de Strasbourg
Similarity:
Vojislav G. Avakumović (1955)
Publications de l'Institut Mathématique
Similarity:
Louis Pigno, Sadahiro Saeki (1990)
Colloquium Mathematicae
Similarity:
Gasmi, A., Soltani, F. (2010)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Vojislav G. Avakumović (1955)
Publications de l'Institut Mathématique
Similarity:
Robert E. Dressler, Louis Pigno (1974)
Colloquium Mathematicae
Similarity:
S. Thangavelu (2000)
Colloquium Mathematicae
Similarity:
We study norm convergence of Bochner-Riesz means associated with certain non-negative differential operators. When the kernel satisfies a weak estimate for large values of m we prove norm convergence of for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.