The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On zero free sets.”

Almost free splitters

Rüdiger Göbel, Saharon Shelah (1999)

Colloquium Mathematicae

Similarity:

Let R be a subring of the rationals. We want to investigate self splitting R-modules G, that is, such that E x t R ( G , G ) = 0 . For simplicity we will call such modules splitters (see [10]). Also other names like stones are used (see a dictionary in Ringel’s paper [8]). Our investigation continues [5]. In [5] we answered an open problem by constructing a large class of splitters. Classical splitters are free modules and torsion-free, algebraically compact ones. In [5] we concentrated on splitters which...

On the Olson and the Strong Davenport constants

Oscar Ordaz, Andreas Philipp, Irene Santos, Wolfgang A. Schmid (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

A subset S of a finite abelian group, written additively, is called zero-sumfree if the sum of the elements of each non-empty subset of S is non-zero. We investigate the maximal cardinality of zero-sumfree sets, i.e., the (small) Olson constant. We determine the maximal cardinality of such sets for several new types of groups; in particular, p -groups with large rank relative to the exponent, including all groups with exponent at most five. These results are derived as consequences of...

L -Khintchine-Bonami inequality in free probability

Artur Buchholz (1998)

Banach Center Publications

Similarity:

We prove the norm estimates for operator-valued functions on free groups supported on the words with fixed length ( f = | w | = l a w λ ( w ) ). Next, we replace the translations by the free generators with a free family of operators and prove inequalities of the same type.