Displaying similar documents to “Non-self-adjoint singular Sturm-Liouville problems with boundary conditions dependent on the eigenparameter.”

Discrete spectrum and principal functions of non-selfadjoint differential operator

Gülen Başcanbaz Tunca, Elgiz Bairamov (1999)

Czechoslovak Mathematical Journal

Similarity:

In this article, we consider the operator L defined by the differential expression ( y ) = - y ' ' + q ( x ) y , - < x < in L 2 ( - , ) , where q is a complex valued function. Discussing the spectrum, we prove that L has a finite number of eigenvalues and spectral singularities, if the condition sup - < x < exp ϵ | x | | q ( x ) | < , ϵ > 0 holds. Later we investigate the properties of the principal functions corresponding to the eigenvalues and the spectral singularities.

A Sturm-Liouville problem with spectral and large parameters in boundary conditions and the associated Cauchy problem

Jamel Ben Amara (2011)

Colloquium Mathematicae

Similarity:

We study a Sturm-Liouville problem containing a spectral parameter in the boundary conditions. We associate to this problem a self-adjoint operator in a Pontryagin space Π₁. Using this operator-theoretic formulation and analytic methods, we study the asymptotic behavior of the eigenvalues under the variation of a large physical parameter in the boundary conditions. The spectral analysis is applied to investigate the well-posedness and stability of the wave equation of a string. ...

On the characterization of scalar type spectral operators

P. A. Cojuhari, A. M. Gomilko (2008)

Studia Mathematica

Similarity:

The paper is concerned with conditions guaranteeing that a bounded operator in a reflexive Banach space is a scalar type spectral operator. The cases where the spectrum of the operator lies on the real axis and on the unit circle are studied separately.

Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type

Bilender P. Allahverdiev, Hüseyin Tuna (2020)

Communications in Mathematics

Similarity:

In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.