Displaying similar documents to “Quantum probability, renormalization and infinite-dimensional *-Lie algebras.”

Hall's transformation via quantum stochastic calculus

Paula Cohen, Robin Hudson, K. Parthasarathy, Sylvia Pulmannová (1998)

Banach Center Publications

Similarity:

It is well known that Hall's transformation factorizes into a composition of two isometric maps to and from a certain completion of the dual of the universal enveloping algebra of the Lie algebra of the initial Lie group. In this paper this fact will be demonstrated by exhibiting each of the maps in turn as the composition of two isometries. For the first map we use classical stochastic calculus, and in particular a stochastic analogue of the Dyson perturbation expansion. For the second...

Introduction to quantum Lie algebras

Gustav Delius (1997)

Banach Center Publications

Similarity:

Quantum Lie algebras are generalizations of Lie algebras whose structure constants are power series in h. They are derived from the quantized enveloping algebras U h ( g ) . The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum Lie algebras are defined in terms of a generalized commutator. The recent general results about quantum Lie algebras are introduced with the help of the explicit example of ( s l 2 ) h .

On quantum weyl algebras and generalized quons

WŁadysŁaw Marcinek (1997)

Banach Center Publications

Similarity:

The model of generalized quons is described in an algebraic way as certain quasiparticle states with statistics determined by a commutation factor on an abelian group. Quantization is described in terms of quantum Weyl algebras. The corresponding commutation relations and scalar product are also given.