Displaying similar documents to “ ( 2 m ) -th mean behavior of solutions of stochastic differential equations under parametric perturbations.”

Stochastic differential inclusions

Michał Kisielewicz (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The definition and some existence theorems for stochastic differential inclusions depending only on selections theorems are given.

Stochastic differential inclusions

Michał Kisielewicz (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The definition and some existence theorems for stochastic differential inclusion dZₜ ∈ F(Zₜ)dXₜ, where F and X are set valued stochastic processes, are given.

On differential equations and inclusions with mean derivatives on a compact manifold

S.V. Azarina, Yu.E. Gliklikh (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We introduce and investigate a new sort of stochastic differential inclusions on manifolds, given in terms of mean derivatives of a stochastic process, introduced by Nelson for the needs of the so called stochastic mechanics. This class of stochastic inclusions is ideologically the closest one to ordinary differential inclusions. For inclusions with forward mean derivatives on manifolds we prove some results on the existence of solutions.

Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers

Patrick Florchinger (2022)

Kybernetika

Similarity:

The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted...