Stationary Solutions to the Navier-Stokes Equations in Dimension Four.
Claus Gerhardt (1979)
Mathematische Zeitschrift
Similarity:
Claus Gerhardt (1979)
Mathematische Zeitschrift
Similarity:
Zujin Zhang, Weijun Yuan, Yong Zhou (2019)
Applications of Mathematics
Similarity:
We review the developments of the regularity criteria for the Navier-Stokes equations, and make some further improvements.
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
Jishan Fan, Xuanji Jia, Yong Zhou (2019)
Applications of Mathematics
Similarity:
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
K. K. Golovkin, A. Krzywicki (1967)
Colloquium Mathematicae
Similarity:
Zujin Zhang, Chupeng Wu, Yong Zhou (2019)
Czechoslovak Mathematical Journal
Similarity:
This paper concerns improving Prodi-Serrin-Ladyzhenskaya type regularity criteria for the Navier-Stokes system, in the sense of multiplying certain negative powers of scaling invariant norms.
Michael Wiegner (2003)
Banach Center Publications
Similarity:
Chebotarev, A. Yu. (2002)
Sibirskij Matematicheskij Zhurnal
Similarity:
Jens Frehse, Michael Růžička (1996)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Jens Frehse, Michael Růžička (1994)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Jens Frehse, Michael Ruzicka (1995)
Mathematische Annalen
Similarity:
Patrick Penel, Milan Pokorný (2004)
Applications of Mathematics
Similarity:
We study the nonstationary Navier-Stokes equations in the entire three-dimensional space and give some criteria on certain components of gradient of the velocity which ensure its global-in-time smoothness.