The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A short proof of a series evaluation in terms of harmonic numbers.”

Some subclasses of close-to-convex functions

Adam Lecko (1993)

Annales Polonici Mathematici

Similarity:

For α ∈ [0,1] and β ∈ (-π/2,π/2) we introduce the classes C β ( α ) defined as follows: a function f regular in U = z: |z| < 1 of the form f ( z ) = z + n = 1 a n z n , z ∈ U, belongs to the class C β ( α ) if R e e i β ( 1 - α ² z ² ) f ' ( z ) < 0 for z ∈ U. Estimates of the coefficients, distortion theorems and other properties of functions in C β ( α ) are examined.

On the riemann zeta-function and the divisor problem

Aleksandar Ivić (2004)

Open Mathematics

Similarity:

Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of ς 1 2 + i t . If E * t = E t - 2 π Δ * t / 2 π with Δ * x = - Δ x + 2 Δ 2 x - 1 2 Δ 4 x , then we obtain 0 T E * t 4 d t e T 16 / 9 + ε . We also show how our method of proof yields the bound r = 1 R t r - G t r + G ς 1 2 + i t 2 d t 4 e T 2 + e G - 2 + R G 4 T ε , where T 1/5+ε≤G≪T, T