Displaying similar documents to “Volterra integral equations governed by highly oscillatory functions on the time scale.”

Volterra integral inclusions via Henstock-Kurzweil-Pettis integral

Bianca Satco (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.

Differential equations in banach space and henstock-kurzweil integrals

Ireneusz Kubiaczyk, Aneta Sikorska (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, using the properties of the Henstock-Kurzweil integral and corresponding theorems, we prove the existence theorem for the equation x' = f(t,x) and inclusion x' ∈ F(t,x) in a Banach space, where f is Henstock-Kurzweil integrable and satisfies some conditions.

Integro-differential equations on time scales with Henstock-Kurzweil delta integrals

Aneta Sikorska-Nowak (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we prove existence theorems for integro - differential equations x Δ ( t ) = f ( t , x ( t ) , t k ( t , s , x ( s ) ) Δ s ) , t ∈ Iₐ = [0,a] ∩ T, a ∈ R₊, x(0) = x₀ where T denotes a time scale (nonempty closed subset of real numbers R), Iₐ is a time scale interval. Functions f,k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil delta integral, which generalizes the Henstock-Kurzweil integral. Additionally, functions f and k satisfy some boundary conditions and...

Banach-valued Henstock-Kurzweil integrable functions are McShane integrable on a portion

Tuo-Yeong Lee (2005)

Mathematica Bohemica

Similarity:

It is shown that a Banach-valued Henstock-Kurzweil integrable function on an m -dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function f [ 0 , 1 ] 2 and a continuous function F [ 0 , 1 ] 2 such that ( ) 0 x ( ) 0 y f ( u , v ) d v d u = ( ) 0 y ( ) 0 x f ( u , v ) d u d v = F ( x , y ) for all ( x , y ) [ 0 , 1 ] 2 .

Substitution formulas for the Kurzweil and Henstock vector integrals

Márcia Federson (2002)

Mathematica Bohemica

Similarity:

Results on integration by parts and integration by substitution for the variational integral of Henstock are well-known. When real-valued functions are considered, such results also hold for the Generalized Riemann Integral defined by Kurzweil since, in this case, the integrals of Kurzweil and Henstock coincide. However, in a Banach-space valued context, the Kurzweil integral properly contains that of Henstock. In the present paper, we consider abstract vector integrals of Kurzweil and...