Volterra integral inclusions via Henstock-Kurzweil-Pettis integral

Bianca Satco

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2006)

  • Volume: 26, Issue: 1, page 87-101
  • ISSN: 1509-9407

Abstract

top
In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.

How to cite

top

Bianca Satco. "Volterra integral inclusions via Henstock-Kurzweil-Pettis integral." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 26.1 (2006): 87-101. <http://eudml.org/doc/271170>.

@article{BiancaSatco2006,
abstract = {In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.},
author = {Bianca Satco},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Volterra integral inclusion; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis integral; set-valued integral; continuous solutions},
language = {eng},
number = {1},
pages = {87-101},
title = {Volterra integral inclusions via Henstock-Kurzweil-Pettis integral},
url = {http://eudml.org/doc/271170},
volume = {26},
year = {2006},
}

TY - JOUR
AU - Bianca Satco
TI - Volterra integral inclusions via Henstock-Kurzweil-Pettis integral
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2006
VL - 26
IS - 1
SP - 87
EP - 101
AB - In this paper, we prove the existence of continuous solutions of a Volterra integral inclusion involving the Henstock-Kurzweil-Pettis integral. Since this kind of integral is more general than the Bochner, Pettis and Henstock integrals, our result extends many of the results previously obtained in the single-valued setting or in the set-valued case.
LA - eng
KW - Volterra integral inclusion; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis integral; set-valued integral; continuous solutions
UR - http://eudml.org/doc/271170
ER -

References

top
  1. [1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer 1984. 
  2. [2] R.J. Aumann, Integrals of Set-Valued Functions, J. Math. Anal. Appl. 12 (1965), 1-12. Zbl0163.06301
  3. [3] D.L. Azzam, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics, Control Cybernet. 31 (3) (2002), 659-693. Zbl1111.34303
  4. [4] E. Balder and A.R. Sambucini, On weak compactness and lower closure results for Pettis integrable (multi)functions, Bull. Polish Acad. Sci. Math. 52 (1) (2004), 53-61. Zbl1110.28009
  5. [5] A. Boccuto and B. Riečan, A note on a Pettis-Kurzweil-Henstock-type integral in Riesz spaces, Real Anal. Exch. 28 (2002/2003), 153-161. Zbl1067.28008
  6. [6] S.S. Cao, The Henstock integral for Banach-valued functions, SEA Bull. Math. 16 (1992), 35-40. Zbl0749.28007
  7. [7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin 1977. 
  8. [8] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlinear Anal. 60 (2005), 651-667. 
  9. [9] M. Cichoń, I. Kubiaczyk and A. Sikorska, The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem, Czechoslovak Mathematical Journal 54 (129) (2004), 279-289. Zbl1080.34550
  10. [10] L. Di Piazza, Kurzweil-Henstock type integration on Banach spaces, Real Anal. Exch. 29 (2) (2003/2004), 543-556. Zbl1083.28007
  11. [11] L. Di Piazza and K. Musial, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2) (2005), 167-179. Zbl1100.28008
  12. [12] I. Dobrakov, On representation of linear operators on C₀(T,X), Czechoslovak Mathematical Journal 20 (1971), 13-30. Zbl0225.47018
  13. [13] K. El Amri and C. Hess, On the Pettis Integral of Closed Valued Multifunctions, Set-Valued Analysis 8 (2000), 329-360. Zbl0974.28009
  14. [14] M. Federson and R. Bianconi, Linear integral equations of Volterra concerning Henstock integrals, Real Anal. Exch. 25 (1) (1999/2000), 389-418. Zbl1015.45001
  15. [15] J.L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115-133. Zbl0971.28009
  16. [16] C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), 39-58. Zbl1108.28010
  17. [17] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. in Math. 4, 1994. Zbl0807.26004
  18. [18] S. Krzyśka and I. Kubiaczyk, Fixed point theorems for upper semicontinuous and weakly-weakly upper semicontinuous multivalued mappings, Math. Japon. 47 (2) (1998), 237-240. Zbl0909.47043
  19. [19] I. Kubiaczyk, On fixed point theorem for weakly sequentially continuous mappings, Discuss. Math. Diff. Inclusions 15 (1995), 15-20. Zbl0832.47046
  20. [20] A. Martellotti and A.R. Sambucini, Comparison between Aumann and Bochner integral, J. Math. Anal. Appl. 260 (1) (2001), 6-17. Zbl0995.28007
  21. [21] A.A. Mitchell and C. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear equations in abstract spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex. 1977), 387-403, Academic Press, New York 1978. 
  22. [22] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999. Zbl0462.34041
  23. [23] K. Musial, Topics in the theory of Pettis integration, in School of Measure theory and Real Analysis, Grado, Italy, May 1992. Zbl0798.46042
  24. [24] D. O'Regan and R. Precup, Fixed Point Theorems for Set-Valued Maps and Existence Principles for Integral Inclusions, J. Math. Anal. Appl. 245 (2000), 594-612. Zbl0956.47026
  25. [25] A.R. Sambucini, A survey on multivalued integration, Atti Sem. Mat. Fis. Univ. Modena, L (2002), 53-63. Zbl1096.28007
  26. [26] A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (1) (2002), 49-60. Zbl1011.34066
  27. [27] A.A. Tolstonogov, On comparison theorems for differential inclusions in locally convex space. I. Existence of solutions. (Russian) Diff. Urav. 17 (4) (1981), 651-659. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.