Convergence of Newton-like methods for singular operator equations using outer inverses.
M.Z. Nashed, X. Chen (1993/94)
Numerische Mathematik
Similarity:
M.Z. Nashed, X. Chen (1993/94)
Numerische Mathematik
Similarity:
Argyros, Ioannis K. (1998)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Ioannis K. Argyros (2002)
Applicationes Mathematicae
Similarity:
We present a local and a semilocal analysis for Newton-like methods in a Banach space. Our hypotheses on the operators involved are very general. It turns out that by choosing special cases for the "majorizing" functions we obtain all previous results in the literature, but not vice versa. Since our results give a deeper insight into the structure of the functions involved, we can obtain semilocal convergence under weaker conditions and in the case of local convergence a larger convergence...
Ioannis K. Argyros, Santhosh George (2015)
Applicationes Mathematicae
Similarity:
We present a local convergence analysis of inexact Newton-like methods for solving nonlinear equations. Using more precise majorant conditions than in earlier studies, we provide: a larger radius of convergence; tighter error estimates on the distances involved; and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.
Ioannis K. Argyros (2005)
Applicationes Mathematicae
Similarity:
The Newton-Kantorovich approach and the majorant principle are used to provide new local and semilocal convergence results for Newton-like methods using outer or generalized inverses in a Banach space setting. Using the same conditions as before, we provide more precise information on the location of the solution and on the error bounds on the distances involved. Moreover since our Newton-Kantorovich-type hypothesis is weaker than before, we can cover cases where the original Newton-Kantorovich...
Ioannis K. Argyros (2006)
Applicationes Mathematicae
Similarity:
The Newton-Mysovskikh theorem provides sufficient conditions for the semilocal convergence of Newton's method to a locally unique solution of an equation in a Banach space setting. It turns out that under weaker hypotheses and a more precise error analysis than before, weaker sufficient conditions can be obtained for the local as well as semilocal convergence of Newton's method. Error bounds on the distances involved as well as a larger radius of convergence are obtained. Some numerical...
Ioannis K. Argyros (2002)
Applicationes Mathematicae
Similarity:
We provide local convergence theorems for the convergence of Newton's method to a solution of an equation in a Banach space utilizing only information at one point. It turns out that for analytic operators the convergence radius for Newton's method is enlarged compared with earlier results. A numerical example is also provided that compares our results favorably with earlier ones.
Argyros, Ioannis K. (2003)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Ioannis K. Argyros, Santhosh George (2019)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.
Polyak, B.T. (2004)
Journal of Mathematical Sciences (New York)
Similarity:
Argyros, Ioannis K. (2001)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Ioannis Argyros (1999)
Applicationes Mathematicae
Similarity:
We use inexact Newton iterates to approximate a solution of a nonlinear equation in a Banach space. Solving a nonlinear equation using Newton iterates at each stage is very expensive in general. That is why we consider inexact Newton methods, where the Newton equations are solved only approximately, and in some unspecified manner. In earlier works [2], [3], natural assumptions under which the forcing sequences are uniformly less than one were given based on the second Fréchet derivative...
Ioannis K. Argyros (2001)
Applicationes Mathematicae
Similarity:
We provide new local and semilocal convergence results for Newton's method. We introduce Lipschitz-type hypotheses on the mth-Frechet derivative. This way we manage to enlarge the radius of convergence of Newton's method. Numerical examples are also provided to show that our results guarantee convergence where others do not.
I. K. Argyros, D. González (2015)
Applicationes Mathematicae
Similarity:
We provide a local as well as a semilocal convergence analysis for Newton's method using unifying hypotheses on twice Fréchet-differentiable operators in a Banach space setting. Our approach extends the applicability of Newton's method. Numerical examples are also provided.