On supersoluble groups acting on Klein surfaces.
Grzegorz Gromadzki (1990)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Grzegorz Gromadzki (1990)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Daniel Ying (2005)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Costa, Antonio F., Izquierdo, Milagros (2002)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
David Singerman, Paul Watson (1997)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).
David Singerman (1997)
Mathematica Slovaca
Similarity:
Grzegorz Gromadzki (2000)
Revista Matemática Iberoamericana
Similarity:
We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.
Bujalance, J.A., Estrada, B. (2002)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Adnan Melekoglu (2000)
Revista Matemática Complutense
Similarity:
Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces...
Estrada, Beatriz (2000)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity: