Displaying similar documents to “Rokhlin's formula for dividing T-curves.”

Fundamental Group of n-sphere for n ≥ 2

Marco Riccardi, Artur Korniłowicz (2012)

Formalized Mathematics


Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]

Linearly Normal Curves in P^n

Pasarescu, Ovidiu (2004)

Serdica Mathematical Journal


2000 Mathematics Subject Classification: 14H45, 14H50, 14J26. We construct linearly normal curves covering a big range from P^n, n ≥ 6 (Theorems 1.7, 1.9). The problem of existence of such algebraic curves in P^3 has been solved in [4], and extended to P^4 and P^5 in [10]. In both these papers is used the idea appearing in [4] and consisting in adding hyperplane sections to the curves constructed in [6] (for P^3) and [15, 11] (for P^4 and P^5) on some special surfaces. In...

The Peano curves as limit of α-dense curves.

G. Mora (2005)



En este artículo presentamos una caracterización de las curvas de Peano como límite uniforme de sucesiones de curvas α-densas en el compacto que es llenado por la curva de Peano. Estas curvas α-densas deben tener densidades tendiendo a cero y sus funciones coordenadas deben de ser de variación tendiendo a infinito cuando α tiende a cero.

Topology of families of affine plane curves

Hà Huy Vui, Pham Tien Son (1999)

Annales Polonici Mathematici


We determine bifurcation sets of families of affine curves and study the topology of such families.

Braid Monodromy of Algebraic Curves

José Ignacio Cogolludo-Agustín (2011)

Annales mathématiques Blaise Pascal


These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009. This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective...