Braid Monodromy of Algebraic Curves

José Ignacio Cogolludo-Agustín[1]

  • [1] Departamento de Matemáticas, IUMA Universidad de Zaragoza C. Pedro Cerbuna, 12 50009 Zaragoza, Spain

Annales mathématiques Blaise Pascal (2011)

  • Volume: 18, Issue: 1, page 141-209
  • ISSN: 1259-1734

Abstract

top
These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated in §2, where the Zariski–van Kampen method to compute a presentation for the fundamental group of the complement to projective plane curves is presented. In §1 these results are prefaced with a review of basic concepts like fundamental groups, locally trivial fibrations, branched and unbranched coverings and a first peek at monodromy. Descriptions of the main motivations that have lead mathematicians to study these objects are included throughout this first chapter. Finally, additional tools and further results that are direct applications of braid monodromy will be considered in §3.While not all proofs are included, we do provide either originals or simplified versions of those that are relevant in the sense that they exhibit the techniques that are most used in this context and lead to a better understanding of the main concepts discussed in this survey.Nothing here is hence original, other than an attempt to bring together different results and points of view.It goes without saying that this is not the first, and hopefully not the last, survey on the topic. For other approaches to braid monodromy we refer to the following beautifully-written papers [73, 20, 6].We finally wish to thank the organizers and the referee for their patience and understanding in the process of writing and correcting these notes.

How to cite

top

Cogolludo-Agustín, José Ignacio. "Braid Monodromy of Algebraic Curves." Annales mathématiques Blaise Pascal 18.1 (2011): 141-209. <http://eudml.org/doc/219701>.

@article{Cogolludo2011,
abstract = {These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated in §2, where the Zariski–van Kampen method to compute a presentation for the fundamental group of the complement to projective plane curves is presented. In §1 these results are prefaced with a review of basic concepts like fundamental groups, locally trivial fibrations, branched and unbranched coverings and a first peek at monodromy. Descriptions of the main motivations that have lead mathematicians to study these objects are included throughout this first chapter. Finally, additional tools and further results that are direct applications of braid monodromy will be considered in §3.While not all proofs are included, we do provide either originals or simplified versions of those that are relevant in the sense that they exhibit the techniques that are most used in this context and lead to a better understanding of the main concepts discussed in this survey.Nothing here is hence original, other than an attempt to bring together different results and points of view.It goes without saying that this is not the first, and hopefully not the last, survey on the topic. For other approaches to braid monodromy we refer to the following beautifully-written papers [73, 20, 6].We finally wish to thank the organizers and the referee for their patience and understanding in the process of writing and correcting these notes.},
affiliation = {Departamento de Matemáticas, IUMA Universidad de Zaragoza C. Pedro Cerbuna, 12 50009 Zaragoza, Spain},
author = {Cogolludo-Agustín, José Ignacio},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Fundamental group; algebraic variety; quasi-projective group; pencil of hypersurfaces; algebraic curve; fundamental group; monodromy; braid group},
language = {eng},
month = {1},
number = {1},
pages = {141-209},
publisher = {Annales mathématiques Blaise Pascal},
title = {Braid Monodromy of Algebraic Curves},
url = {http://eudml.org/doc/219701},
volume = {18},
year = {2011},
}

TY - JOUR
AU - Cogolludo-Agustín, José Ignacio
TI - Braid Monodromy of Algebraic Curves
JO - Annales mathématiques Blaise Pascal
DA - 2011/1//
PB - Annales mathématiques Blaise Pascal
VL - 18
IS - 1
SP - 141
EP - 209
AB - These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated in §2, where the Zariski–van Kampen method to compute a presentation for the fundamental group of the complement to projective plane curves is presented. In §1 these results are prefaced with a review of basic concepts like fundamental groups, locally trivial fibrations, branched and unbranched coverings and a first peek at monodromy. Descriptions of the main motivations that have lead mathematicians to study these objects are included throughout this first chapter. Finally, additional tools and further results that are direct applications of braid monodromy will be considered in §3.While not all proofs are included, we do provide either originals or simplified versions of those that are relevant in the sense that they exhibit the techniques that are most used in this context and lead to a better understanding of the main concepts discussed in this survey.Nothing here is hence original, other than an attempt to bring together different results and points of view.It goes without saying that this is not the first, and hopefully not the last, survey on the topic. For other approaches to braid monodromy we refer to the following beautifully-written papers [73, 20, 6].We finally wish to thank the organizers and the referee for their patience and understanding in the process of writing and correcting these notes.
LA - eng
KW - Fundamental group; algebraic variety; quasi-projective group; pencil of hypersurfaces; algebraic curve; fundamental group; monodromy; braid group
UR - http://eudml.org/doc/219701
ER -

References

top
  1. Harold Abelson, Topologically distinct conjugate varieties with finite fundamental group, Topology 13 (1974), 161-176 Zbl0279.14001MR349679
  2. Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo Agustín, Braid monodromy and topology of plane curves, Duke Math. J. 118 (2003), 261-278 Zbl1058.14053MR1980995
  3. Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo-Agustín, Miguel Marco Buzunáriz, Topology and combinatorics of real line arrangements, Compos. Math. 141 (2005), 1578-1588 Zbl1085.32012MR2188450
  4. Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo Agustín, Miguel Ángel Marco Buzunáriz, Invariants of combinatorial line arrangements and Rybnikov’s example, Singularity theory and its applications 43 (2006), 1-34, Math. Soc. Japan, Tokyo Zbl1135.32025MR2313406
  5. Enrique Artal Bartolo, José Ignacio Cogolludo, Hiro-o Tokunaga, Nodal degenerations of plane curves and Galois covers, Geom. Dedicata 121 (2006), 129-142 Zbl1103.14016MR2276239
  6. Enrique Artal Bartolo, José Ignacio Cogolludo, Hiro-o Tokunaga, A survey on Zariski pairs, Algebraic geometry in East Asia—Hanoi 2005 50 (2008), 1-100, Math. Soc. Japan, Tokyo Zbl1141.14015MR2409555
  7. E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101-126 Zbl0030.17703MR19087
  8. William A. Arvola, Complexified real arrangements of hyperplanes, Manuscripta Math. 71 (1991), 295-306 Zbl0731.57011MR1103735
  9. William A. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992), 757-765 Zbl0772.57001MR1191377
  10. T. Ben-Itzhak, M. Teicher, Properties of Hurwitz equivalence in the braid group of order n , J. Algebra 264 (2003), 15-25 Zbl1054.20017MR1980683
  11. David Bessis, Variations on Van Kampen’s method, J. Math. Sci. (N. Y.) 128 (2005), 3142-3150 Zbl1121.57002MR2171593
  12. Joan S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969), 213-238 Zbl0167.21503MR243519
  13. Ronald Brown, Topology and groupoids, (2006), BookSurge, LLC, Charleston, SC Zbl1093.55001MR2273730
  14. J. Carmona Ruber, Monodromía de trenzas de curvas algebraicas planas, (2003) 
  15. F. Catanese, On a problem of Chisini, Duke Math. J. 53 (1986), 33-42 Zbl0609.14031MR835794
  16. D. Cheniot, Une démonstration du théorème de Zariski sur les sections hyperplanes d’une hypersurface projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d’une courbe projective plane, Compositio Math. 27 (1973), 141-158 Zbl0294.14010MR366922
  17. D. Chéniot, A. Libgober, Zariski-van Kampen theorem for higher-homotopy groups, J. Inst. Math. Jussieu 2 (2003), 495-527 Zbl1081.14505MR2006797
  18. Oscar Chisini, Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser. 66) (1933), 1141-1155 Zbl0008.22001
  19. Oscar Chisini, Sulla identità birazionale di due funzioni algebriche di più variabili, dotate di una medesima varietà di diramazione, Ist. Lombardo Sci. Lett. Rend Cl. Sci. Mat. Nat. (3) 11(80) (1947), 3-6 (1949) Zbl0041.28002MR34054
  20. Daniel C. Cohen, Alexander I. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997), 285-315 Zbl0959.52018MR1470093
  21. R. Cordovil, J. L. Fachada, Braid monodromy groups of wiring diagrams, Boll. Un. Mat. Ital. B (7) 9 (1995), 399-416 Zbl0868.14028MR1333969
  22. Raul Cordovil, The fundamental group of the complement of the complexification of a real arrangement of hyperplanes, Adv. in Appl. Math. 21 (1998), 481-498 Zbl0921.55004MR1641238
  23. H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, 14 (1980), Springer-Verlag, Berlin Zbl0077.02801MR562913
  24. Pierre Deligne, Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Bourbaki Seminar, Vol. 1979/80 842 (1981), 1-10, Springer, Berlin Zbl0478.14008MR636513
  25. Alexandru Dimca, Singularities and topology of hypersurfaces, (1992), Springer-Verlag, New York Zbl0753.57001MR1194180
  26. Igor Dolgachev, Anatoly Libgober, On the fundamental group of the complement to a discriminant variety, Algebraic geometry (Chicago, Ill., 1980) 862 (1981), 1-25, Springer, Berlin Zbl0475.14011MR644816
  27. M. J. Dunwoody, The homotopy type of a two-dimensional complex, Bull. London Math. Soc. 8 (1976), 282-285 Zbl0341.55008MR425943
  28. Charles Ehresmann, Sur les espaces fibrés différentiables, C. R. Acad. Sci. Paris 224 (1947), 1611-1612 Zbl0029.42001MR20774
  29. Federigo Enriques, Sulla costruzione delle funzioni algebriche di due variabili possedenti una data curva di diramazione, Ann. Mat. Pura Appl. 1 (1924), 185-198 Zbl50.0674.01MR1553061
  30. Michael Falk, The minimal model of the complement of an arrangement of hyperplanes, Trans. Amer. Math. Soc. 309 (1988), 543-556 Zbl0707.57001MR929668
  31. Michael Falk, Homotopy types of line arrangements, Invent. Math. 111 (1993), 139-150 Zbl0772.52011MR1193601
  32. William Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), 407-409 Zbl0406.14008MR569076
  33. Mark Goresky, Robert MacPherson, Stratified Morse theory, 14 (1988), Springer-Verlag, Berlin MR932724
  34. Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin, Geometry of families of nodal curves on the blown-up projective plane, Trans. Amer. Math. Soc. 350 (1998), 251-274 Zbl0889.14010MR1443875
  35. Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin, Plane curves of minimal degree with prescribed singularities, Invent. Math. 133 (1998), 539-580 Zbl0924.14013MR1645074
  36. Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin, The variety of plane curves with ordinary singularities is not irreducible, Internat. Math. Res. Notices (2001), 543-550 Zbl0982.14018MR1836729
  37. A Grothendieck, M. Raynaud, Revêtements étales et groupe fondamental (SGA 1), (2003), Société Mathématique de France, Paris MR2017446
  38. Helmut A. Hamm, Lefschetz theorems for singular varieties, Singularities, Part 1 (Arcata, Calif., 1981) 40 (1983), 547-557, Amer. Math. Soc., Providence, RI Zbl0525.14011MR713091
  39. Joe Harris, On the Severi problem, Invent. Math. 84 (1986), 445-461 Zbl0596.14017MR837522
  40. Eriko Hironaka, Abelian coverings of the complex projective plane branched along configurations of real lines, Mem. Amer. Math. Soc. 105 (1993) Zbl0788.14054MR1164128
  41. Egbert R. van Kampen, On the connection between the fundamental groups of some related spaces., Am. J. Math. 55 (1933), 261-267 Zbl0006.41503
  42. Egbert R. Van Kampen, On the Fundamental Group of an Algebraic Curve, Amer. J. Math. 55 (1933), 255-260 Zbl0006.41502MR1506962
  43. Viatcheslav Kharlamov, Viktor Kulikov, Diffeomorphisms, isotopies, and braid monodromy factorizations of plane cuspidal curves, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 855-859 Zbl1066.14050MR1873224
  44. Valentine S. Kulikov, On a conjecture of Chisini for coverings of the plane with A-D-E-singularities, Real and complex singularities 232 (2003), 175-188, Dekker, New York Zbl1081.14050MR2075064
  45. Vik. S. Kulikov, On Chisini’s conjecture, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), 83-116 Zbl0962.14005MR1748562
  46. Vik. S. Kulikov, On Chisini’s conjecture. II, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), 63-76 Zbl1153.14012MR2473772
  47. Vik. S. Kulikov, V. M. Kharlamov, On braid monodromy factorizations, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), 79-118 Zbl1076.14022MR1992194
  48. Vik. S. Kulikov, M. Taĭkher, Braid monodromy factorizations and diffeomorphism types, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 89-120 Zbl1004.14005MR1770673
  49. Klaus Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology 20 (1981), 15-51 Zbl0445.14010MR592569
  50. A. Libgober, On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. 367 (1986), 103-114 Zbl0576.14019MR839126
  51. A. Libgober, Homotopy groups of the complements to singular hypersurfaces. II, Ann. of Math. (2) 139 (1994), 117-144 Zbl0815.57017MR1259366
  52. Anatoly Libgober, Homotopy groups of complements to ample divisors, Singularity theory and its applications 43 (2006), 179-204, Math. Soc. Japan, Tokyo Zbl1134.14014MR2325138
  53. Saunders MacLane, Some Interpretations of Abstract Linear Dependence in Terms of Projective Geometry, Amer. J. Math. 58 (1936), 236-240 Zbl0013.19503MR1507146
  54. Sandro Manfredini, Roberto Pignatelli, Chisini’s conjecture for curves with singularities of type x n = y m , Michigan Math. J. 50 (2002), 287-312 Zbl1065.14045MR1914066
  55. John Milnor, Singular points of complex hypersurfaces, (1968), Princeton University Press, Princeton, N.J. Zbl0184.48405MR239612
  56. B. Moishezon, The arithmetic of braids and a statement of Chisini, Geometric topology (Haifa, 1992) 164 (1994), 151-175, Amer. Math. Soc., Providence, RI Zbl0837.14020MR1282761
  57. B. G. Moishezon, Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980) 862 (1981), 107-192, Springer, Berlin Zbl0476.14005MR644819
  58. James R. Munkres, Topology: a first course, (1975), Prentice-Hall Inc., Englewood Cliffs, N.J. Zbl0951.54001MR464128
  59. Makoto Namba, Branched coverings and algebraic functions, 161 (1987), Longman Scientific & Technical, Harlow Zbl0706.14017MR933557
  60. S. Yu. Nemirovskiĭ, On Kulikov’s theorem on the Chisini conjecture, Izv. Ross. Akad. Nauk Ser. Mat. 65 (2001), 77-80 Zbl1012.14005MR1829404
  61. Madhav V. Nori, Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), 305-344 Zbl0527.14016MR732347
  62. S. Yu. Orevkov, Realizability of a braid monodromy by an algebraic function in a disk, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 867-871 Zbl0922.32020MR1648548
  63. Ziv Ran, Families of plane curves and their limits: Enriques’ conjecture and beyond, Ann. of Math. (2) 130 (1989), 121-157 Zbl0704.14018MR1005609
  64. Richard Randell, The fundamental group of the complement of a union of complex hyperplanes, Invent. Math. 69 (1982), 103-108 Zbl0505.14017MR671654
  65. Richard Randell, Milnor fibers and Alexander polynomials of plane curves, Singularities, Part 2 (Arcata, Calif., 1981) 40 (1983), 415-419, Amer. Math. Soc., Providence, RI Zbl0524.14027MR713266
  66. Richard Randell, Correction: “The fundamental group of the complement of a union of complex hyperplanes” [Invent. Math. 69 (1982), no. 1, 103–108; MR0671654 (84a:32016)], Invent. Math. 80 (1985), 467-468 Zbl0596.14014MR671654
  67. G. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement Zbl1271.14085
  68. Mario Salvetti, Arrangements of lines and monodromy of plane curves, Compositio Math. 68 (1988), 103-122 Zbl0661.14038MR962507
  69. Mario Salvetti, On the homotopy type of the complement to an arrangement of lines in C 2 , Boll. Un. Mat. Ital. A (7) 2 (1988), 337-344 Zbl0668.57002MR966915
  70. H. Seifert, Konstruktion dreidimensionaler geschlossener Räume, Berichte über d. Verhandl. d. Sächs. Ges. d. Wiss., Math.-Phys. Kl. 83 (1931), 26-66 Zbl0002.16001
  71. Jean-Pierre Serre, Exemples de variétés projectives conjuguées non homéomorphes, C. R. Acad. Sci. Paris 258 (1964), 4194-4196 Zbl0117.38003MR166197
  72. Francesco Severi, Vorlesungen über algebraische Geometrie: Geometrie auf einer Kurve, Riemannsche Flächen, Abelsche Integrale, (1968), Johnson Reprint Corp., New York MR245574
  73. I. Shimada, Lecture on Zariski Van-Kampen theorem, (2007) Zbl1074.14517
  74. Eugenii Shustin, Smoothness and irreducibility of families of plane algebraic curves with ordinary singularities, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) 9 (1996), 393-416, Bar-Ilan Univ., Ramat Gan Zbl0857.14015MR1360516
  75. V. A. Vassiliev, Introduction to topology, 14 (2001), American Mathematical Society, Providence, RI Zbl0971.57001MR1816237
  76. Oscar Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math. 51 (1929), 305-328 Zbl55.0806.01MR1506719
  77. Oscar Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. (2) 32 (1931), 485-511 Zbl0001.40301MR1503012
  78. Oscar Zariski, On the Poincaré Group of Rational Plane Curves, Amer. J. Math. 58 (1936), 607-619 Zbl0014.32801MR1507185

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.