Braid Monodromy of Algebraic Curves
José Ignacio Cogolludo-Agustín[1]
- [1] Departamento de Matemáticas, IUMA Universidad de Zaragoza C. Pedro Cerbuna, 12 50009 Zaragoza, Spain
Annales mathématiques Blaise Pascal (2011)
- Volume: 18, Issue: 1, page 141-209
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topCogolludo-Agustín, José Ignacio. "Braid Monodromy of Algebraic Curves." Annales mathématiques Blaise Pascal 18.1 (2011): 141-209. <http://eudml.org/doc/219701>.
@article{Cogolludo2011,
abstract = {These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated in §2, where the Zariski–van Kampen method to compute a presentation for the fundamental group of the complement to projective plane curves is presented. In §1 these results are prefaced with a review of basic concepts like fundamental groups, locally trivial fibrations, branched and unbranched coverings and a first peek at monodromy. Descriptions of the main motivations that have lead mathematicians to study these objects are included throughout this first chapter. Finally, additional tools and further results that are direct applications of braid monodromy will be considered in §3.While not all proofs are included, we do provide either originals or simplified versions of those that are relevant in the sense that they exhibit the techniques that are most used in this context and lead to a better understanding of the main concepts discussed in this survey.Nothing here is hence original, other than an attempt to bring together different results and points of view.It goes without saying that this is not the first, and hopefully not the last, survey on the topic. For other approaches to braid monodromy we refer to the following beautifully-written papers [73, 20, 6].We finally wish to thank the organizers and the referee for their patience and understanding in the process of writing and correcting these notes.},
affiliation = {Departamento de Matemáticas, IUMA Universidad de Zaragoza C. Pedro Cerbuna, 12 50009 Zaragoza, Spain},
author = {Cogolludo-Agustín, José Ignacio},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Fundamental group; algebraic variety; quasi-projective group; pencil of hypersurfaces; algebraic curve; fundamental group; monodromy; braid group},
language = {eng},
month = {1},
number = {1},
pages = {141-209},
publisher = {Annales mathématiques Blaise Pascal},
title = {Braid Monodromy of Algebraic Curves},
url = {http://eudml.org/doc/219701},
volume = {18},
year = {2011},
}
TY - JOUR
AU - Cogolludo-Agustín, José Ignacio
TI - Braid Monodromy of Algebraic Curves
JO - Annales mathématiques Blaise Pascal
DA - 2011/1//
PB - Annales mathématiques Blaise Pascal
VL - 18
IS - 1
SP - 141
EP - 209
AB - These are the notes from a one-week course on Braid Monodromy of Algebraic Curves given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.This is intended to be an introductory survey through which we hope we can briefly outline the power of the concept monodromy as a common area for group theory, algebraic geometry, and topology of projective curves.The main classical results are stated in §2, where the Zariski–van Kampen method to compute a presentation for the fundamental group of the complement to projective plane curves is presented. In §1 these results are prefaced with a review of basic concepts like fundamental groups, locally trivial fibrations, branched and unbranched coverings and a first peek at monodromy. Descriptions of the main motivations that have lead mathematicians to study these objects are included throughout this first chapter. Finally, additional tools and further results that are direct applications of braid monodromy will be considered in §3.While not all proofs are included, we do provide either originals or simplified versions of those that are relevant in the sense that they exhibit the techniques that are most used in this context and lead to a better understanding of the main concepts discussed in this survey.Nothing here is hence original, other than an attempt to bring together different results and points of view.It goes without saying that this is not the first, and hopefully not the last, survey on the topic. For other approaches to braid monodromy we refer to the following beautifully-written papers [73, 20, 6].We finally wish to thank the organizers and the referee for their patience and understanding in the process of writing and correcting these notes.
LA - eng
KW - Fundamental group; algebraic variety; quasi-projective group; pencil of hypersurfaces; algebraic curve; fundamental group; monodromy; braid group
UR - http://eudml.org/doc/219701
ER -
References
top- Harold Abelson, Topologically distinct conjugate varieties with finite fundamental group, Topology 13 (1974), 161-176 Zbl0279.14001MR349679
- Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo Agustín, Braid monodromy and topology of plane curves, Duke Math. J. 118 (2003), 261-278 Zbl1058.14053MR1980995
- Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo-Agustín, Miguel Marco Buzunáriz, Topology and combinatorics of real line arrangements, Compos. Math. 141 (2005), 1578-1588 Zbl1085.32012MR2188450
- Enrique Artal Bartolo, Jorge Carmona Ruber, José Ignacio Cogolludo Agustín, Miguel Ángel Marco Buzunáriz, Invariants of combinatorial line arrangements and Rybnikov’s example, Singularity theory and its applications 43 (2006), 1-34, Math. Soc. Japan, Tokyo Zbl1135.32025MR2313406
- Enrique Artal Bartolo, José Ignacio Cogolludo, Hiro-o Tokunaga, Nodal degenerations of plane curves and Galois covers, Geom. Dedicata 121 (2006), 129-142 Zbl1103.14016MR2276239
- Enrique Artal Bartolo, José Ignacio Cogolludo, Hiro-o Tokunaga, A survey on Zariski pairs, Algebraic geometry in East Asia—Hanoi 2005 50 (2008), 1-100, Math. Soc. Japan, Tokyo Zbl1141.14015MR2409555
- E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101-126 Zbl0030.17703MR19087
- William A. Arvola, Complexified real arrangements of hyperplanes, Manuscripta Math. 71 (1991), 295-306 Zbl0731.57011MR1103735
- William A. Arvola, The fundamental group of the complement of an arrangement of complex hyperplanes, Topology 31 (1992), 757-765 Zbl0772.57001MR1191377
- T. Ben-Itzhak, M. Teicher, Properties of Hurwitz equivalence in the braid group of order , J. Algebra 264 (2003), 15-25 Zbl1054.20017MR1980683
- David Bessis, Variations on Van Kampen’s method, J. Math. Sci. (N. Y.) 128 (2005), 3142-3150 Zbl1121.57002MR2171593
- Joan S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969), 213-238 Zbl0167.21503MR243519
- Ronald Brown, Topology and groupoids, (2006), BookSurge, LLC, Charleston, SC Zbl1093.55001MR2273730
- J. Carmona Ruber, Monodromía de trenzas de curvas algebraicas planas, (2003)
- F. Catanese, On a problem of Chisini, Duke Math. J. 53 (1986), 33-42 Zbl0609.14031MR835794
- D. Cheniot, Une démonstration du théorème de Zariski sur les sections hyperplanes d’une hypersurface projective et du théorème de Van Kampen sur le groupe fondamental du complémentaire d’une courbe projective plane, Compositio Math. 27 (1973), 141-158 Zbl0294.14010MR366922
- D. Chéniot, A. Libgober, Zariski-van Kampen theorem for higher-homotopy groups, J. Inst. Math. Jussieu 2 (2003), 495-527 Zbl1081.14505MR2006797
- Oscar Chisini, Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser. 66) (1933), 1141-1155 Zbl0008.22001
- Oscar Chisini, Sulla identità birazionale di due funzioni algebriche di più variabili, dotate di una medesima varietà di diramazione, Ist. Lombardo Sci. Lett. Rend Cl. Sci. Mat. Nat. (3) 11(80) (1947), 3-6 (1949) Zbl0041.28002MR34054
- Daniel C. Cohen, Alexander I. Suciu, The braid monodromy of plane algebraic curves and hyperplane arrangements, Comment. Math. Helv. 72 (1997), 285-315 Zbl0959.52018MR1470093
- R. Cordovil, J. L. Fachada, Braid monodromy groups of wiring diagrams, Boll. Un. Mat. Ital. B (7) 9 (1995), 399-416 Zbl0868.14028MR1333969
- Raul Cordovil, The fundamental group of the complement of the complexification of a real arrangement of hyperplanes, Adv. in Appl. Math. 21 (1998), 481-498 Zbl0921.55004MR1641238
- H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, 14 (1980), Springer-Verlag, Berlin Zbl0077.02801MR562913
- Pierre Deligne, Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abélien (d’après W. Fulton), Bourbaki Seminar, Vol. 1979/80 842 (1981), 1-10, Springer, Berlin Zbl0478.14008MR636513
- Alexandru Dimca, Singularities and topology of hypersurfaces, (1992), Springer-Verlag, New York Zbl0753.57001MR1194180
- Igor Dolgachev, Anatoly Libgober, On the fundamental group of the complement to a discriminant variety, Algebraic geometry (Chicago, Ill., 1980) 862 (1981), 1-25, Springer, Berlin Zbl0475.14011MR644816
- M. J. Dunwoody, The homotopy type of a two-dimensional complex, Bull. London Math. Soc. 8 (1976), 282-285 Zbl0341.55008MR425943
- Charles Ehresmann, Sur les espaces fibrés différentiables, C. R. Acad. Sci. Paris 224 (1947), 1611-1612 Zbl0029.42001MR20774
- Federigo Enriques, Sulla costruzione delle funzioni algebriche di due variabili possedenti una data curva di diramazione, Ann. Mat. Pura Appl. 1 (1924), 185-198 Zbl50.0674.01MR1553061
- Michael Falk, The minimal model of the complement of an arrangement of hyperplanes, Trans. Amer. Math. Soc. 309 (1988), 543-556 Zbl0707.57001MR929668
- Michael Falk, Homotopy types of line arrangements, Invent. Math. 111 (1993), 139-150 Zbl0772.52011MR1193601
- William Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2) 111 (1980), 407-409 Zbl0406.14008MR569076
- Mark Goresky, Robert MacPherson, Stratified Morse theory, 14 (1988), Springer-Verlag, Berlin MR932724
- Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin, Geometry of families of nodal curves on the blown-up projective plane, Trans. Amer. Math. Soc. 350 (1998), 251-274 Zbl0889.14010MR1443875
- Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin, Plane curves of minimal degree with prescribed singularities, Invent. Math. 133 (1998), 539-580 Zbl0924.14013MR1645074
- Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin, The variety of plane curves with ordinary singularities is not irreducible, Internat. Math. Res. Notices (2001), 543-550 Zbl0982.14018MR1836729
- A Grothendieck, M. Raynaud, Revêtements étales et groupe fondamental (SGA 1), (2003), Société Mathématique de France, Paris MR2017446
- Helmut A. Hamm, Lefschetz theorems for singular varieties, Singularities, Part 1 (Arcata, Calif., 1981) 40 (1983), 547-557, Amer. Math. Soc., Providence, RI Zbl0525.14011MR713091
- Joe Harris, On the Severi problem, Invent. Math. 84 (1986), 445-461 Zbl0596.14017MR837522
- Eriko Hironaka, Abelian coverings of the complex projective plane branched along configurations of real lines, Mem. Amer. Math. Soc. 105 (1993) Zbl0788.14054MR1164128
- Egbert R. van Kampen, On the connection between the fundamental groups of some related spaces., Am. J. Math. 55 (1933), 261-267 Zbl0006.41503
- Egbert R. Van Kampen, On the Fundamental Group of an Algebraic Curve, Amer. J. Math. 55 (1933), 255-260 Zbl0006.41502MR1506962
- Viatcheslav Kharlamov, Viktor Kulikov, Diffeomorphisms, isotopies, and braid monodromy factorizations of plane cuspidal curves, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 855-859 Zbl1066.14050MR1873224
- Valentine S. Kulikov, On a conjecture of Chisini for coverings of the plane with A-D-E-singularities, Real and complex singularities 232 (2003), 175-188, Dekker, New York Zbl1081.14050MR2075064
- Vik. S. Kulikov, On Chisini’s conjecture, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), 83-116 Zbl0962.14005MR1748562
- Vik. S. Kulikov, On Chisini’s conjecture. II, Izv. Ross. Akad. Nauk Ser. Mat. 72 (2008), 63-76 Zbl1153.14012MR2473772
- Vik. S. Kulikov, V. M. Kharlamov, On braid monodromy factorizations, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), 79-118 Zbl1076.14022MR1992194
- Vik. S. Kulikov, M. Taĭkher, Braid monodromy factorizations and diffeomorphism types, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 89-120 Zbl1004.14005MR1770673
- Klaus Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology 20 (1981), 15-51 Zbl0445.14010MR592569
- A. Libgober, On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. 367 (1986), 103-114 Zbl0576.14019MR839126
- A. Libgober, Homotopy groups of the complements to singular hypersurfaces. II, Ann. of Math. (2) 139 (1994), 117-144 Zbl0815.57017MR1259366
- Anatoly Libgober, Homotopy groups of complements to ample divisors, Singularity theory and its applications 43 (2006), 179-204, Math. Soc. Japan, Tokyo Zbl1134.14014MR2325138
- Saunders MacLane, Some Interpretations of Abstract Linear Dependence in Terms of Projective Geometry, Amer. J. Math. 58 (1936), 236-240 Zbl0013.19503MR1507146
- Sandro Manfredini, Roberto Pignatelli, Chisini’s conjecture for curves with singularities of type , Michigan Math. J. 50 (2002), 287-312 Zbl1065.14045MR1914066
- John Milnor, Singular points of complex hypersurfaces, (1968), Princeton University Press, Princeton, N.J. Zbl0184.48405MR239612
- B. Moishezon, The arithmetic of braids and a statement of Chisini, Geometric topology (Haifa, 1992) 164 (1994), 151-175, Amer. Math. Soc., Providence, RI Zbl0837.14020MR1282761
- B. G. Moishezon, Stable branch curves and braid monodromies, Algebraic geometry (Chicago, Ill., 1980) 862 (1981), 107-192, Springer, Berlin Zbl0476.14005MR644819
- James R. Munkres, Topology: a first course, (1975), Prentice-Hall Inc., Englewood Cliffs, N.J. Zbl0951.54001MR464128
- Makoto Namba, Branched coverings and algebraic functions, 161 (1987), Longman Scientific & Technical, Harlow Zbl0706.14017MR933557
- S. Yu. Nemirovskiĭ, On Kulikov’s theorem on the Chisini conjecture, Izv. Ross. Akad. Nauk Ser. Mat. 65 (2001), 77-80 Zbl1012.14005MR1829404
- Madhav V. Nori, Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), 305-344 Zbl0527.14016MR732347
- S. Yu. Orevkov, Realizability of a braid monodromy by an algebraic function in a disk, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 867-871 Zbl0922.32020MR1648548
- Ziv Ran, Families of plane curves and their limits: Enriques’ conjecture and beyond, Ann. of Math. (2) 130 (1989), 121-157 Zbl0704.14018MR1005609
- Richard Randell, The fundamental group of the complement of a union of complex hyperplanes, Invent. Math. 69 (1982), 103-108 Zbl0505.14017MR671654
- Richard Randell, Milnor fibers and Alexander polynomials of plane curves, Singularities, Part 2 (Arcata, Calif., 1981) 40 (1983), 415-419, Amer. Math. Soc., Providence, RI Zbl0524.14027MR713266
- Richard Randell, Correction: “The fundamental group of the complement of a union of complex hyperplanes” [Invent. Math. 69 (1982), no. 1, 103–108; MR0671654 (84a:32016)], Invent. Math. 80 (1985), 467-468 Zbl0596.14014MR671654
- G. Rybnikov, On the fundamental group of the complement of a complex hyperplane arrangement Zbl1271.14085
- Mario Salvetti, Arrangements of lines and monodromy of plane curves, Compositio Math. 68 (1988), 103-122 Zbl0661.14038MR962507
- Mario Salvetti, On the homotopy type of the complement to an arrangement of lines in , Boll. Un. Mat. Ital. A (7) 2 (1988), 337-344 Zbl0668.57002MR966915
- H. Seifert, Konstruktion dreidimensionaler geschlossener Räume, Berichte über d. Verhandl. d. Sächs. Ges. d. Wiss., Math.-Phys. Kl. 83 (1931), 26-66 Zbl0002.16001
- Jean-Pierre Serre, Exemples de variétés projectives conjuguées non homéomorphes, C. R. Acad. Sci. Paris 258 (1964), 4194-4196 Zbl0117.38003MR166197
- Francesco Severi, Vorlesungen über algebraische Geometrie: Geometrie auf einer Kurve, Riemannsche Flächen, Abelsche Integrale, (1968), Johnson Reprint Corp., New York MR245574
- I. Shimada, Lecture on Zariski Van-Kampen theorem, (2007) Zbl1074.14517
- Eugenii Shustin, Smoothness and irreducibility of families of plane algebraic curves with ordinary singularities, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) 9 (1996), 393-416, Bar-Ilan Univ., Ramat Gan Zbl0857.14015MR1360516
- V. A. Vassiliev, Introduction to topology, 14 (2001), American Mathematical Society, Providence, RI Zbl0971.57001MR1816237
- Oscar Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math. 51 (1929), 305-328 Zbl55.0806.01MR1506719
- Oscar Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. (2) 32 (1931), 485-511 Zbl0001.40301MR1503012
- Oscar Zariski, On the Poincaré Group of Rational Plane Curves, Amer. J. Math. 58 (1936), 607-619 Zbl0014.32801MR1507185
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.