Tetragonal modular curves
Daeyeol Jeon, Euisung Park (2005)
Acta Arithmetica
Similarity:
Daeyeol Jeon, Euisung Park (2005)
Acta Arithmetica
Similarity:
Bruce Hunt (1990)
Compositio Mathematica
Similarity:
Bumkyu Cho, SoYoung Choi, Chang Heon Kim (2013)
Acta Arithmetica
Similarity:
We extend Guerzhoy's Maass-modular grids on the full modular group SL₂(ℤ) to congruence subgroups Γ₀(N) and Γ₀⁺(p).
Serge Lang, Daniel S. Kubert (1978)
Mathematische Annalen
Similarity:
Alina Carmen Cojocaru, Ernst Kani (2004)
Acta Arithmetica
Similarity:
Masataka Chida (2005)
Acta Arithmetica
Similarity:
Arjune Budhram (2002)
Acta Arithmetica
Similarity:
Nobuhiko Ishida, Noburo Ishii (2002)
Acta Arithmetica
Similarity:
Shoyu Nagaoka (1997)
Manuscripta mathematica
Similarity:
Josep Gonzalez Rovira (1991)
Annales de l'institut Fourier
Similarity:
We compute, in a unified way, the equations of all hyperelliptic modular curves. The main tool is provided by a class of modular functions introduced by Newman in 1957. The method uses the action of the hyperelliptic involution on the cusps.
Daeyeol Jeon, Chang Heon Kim (2007)
Acta Arithmetica
Similarity:
Tsz Ho Chan, Igor E. Shparlinski (2010)
Acta Arithmetica
Similarity:
René Schoof, Nikos Tzanakis (2012)
Acta Arithmetica
Similarity:
Chang Heon Kim, Ja Kyung Koo (1998)
Acta Arithmetica
Similarity:
We find a generator of the function field on the modular curve X₁(4) by means of classical theta functions θ₂ and θ₃, and estimate the normalized generator which becomes the Thompson series of type 4C. With these modular functions we investigate some number theoretic properties.
D. Choi (2006)
Acta Arithmetica
Similarity: