The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Almost symplectic N -linear connections in the bundle of accelerations.”

Symplectic Killing spinors

Svatopluk Krýsl (2012)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( M , ω ) be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection . Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one...

Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds

Svatopluk Krýsl (2007)

Archivum Mathematicum

Similarity:

Consider a flat symplectic manifold ( M 2 l , ω ) , l 2 , admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If λ is an eigenvalue of the symplectic Dirac operator such that - ı l λ is not a symplectic Killing number, then l - 1 l λ is an eigenvalue of the symplectic Rarita-Schwinger operator.