On eigenfunction expansions and scattering theory.
Günter Stolz, Thomas Poerschke (1993)
Mathematische Zeitschrift
Similarity:
Günter Stolz, Thomas Poerschke (1993)
Mathematische Zeitschrift
Similarity:
Anna Kazeykina (2013)
Journées Équations aux dérivées partielles
Similarity:
Novikov-Veselov equation is a (2+1)-dimensional analog of the classic Korteweg-de Vries equation integrable via the inverse scattering translform for the 2-dimensional stationary Schrödinger equation. In this talk we present some recent results on existence and absence of algebraically localized solitons for the Novikov-Veselov equation as well as some results on the large time behavior of the “inverse scattering solutions” for this equation.
D. R. Yafaev (1988-1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
R. Weder (1994-1995)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
A. Martin (1974)
Recherche Coopérative sur Programme n°25
Similarity:
D. R. Yafaev (1986)
Annales de l'I.H.P. Physique théorique
Similarity:
Yannick Gâtel, Dimitri Yafaev (1999)
Annales de l'institut Fourier
Similarity:
We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.
S. Agmon (1978-1979)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity: