Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture.
Warren Dicks (1994)
Inventiones mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Warren Dicks (1994)
Inventiones mathematicae
Similarity:
Ken-ichi Kawarabayashi (2004)
Discussiones Mathematicae Graph Theory
Similarity:
Let G be a graph of order n. Let K¯ₗ be the graph obtained from Kₗ by removing one edge. In this paper, we propose the following conjecture: Let G be a graph of order n ≥ lk with δ(G) ≥ (n-k+1)(l-3)/(l-2)+k-1. Then G has k vertex-disjoint K¯ₗ. This conjecture is motivated by Hajnal and Szemerédi's [6] famous theorem. In this paper, we verify this conjecture for l=4.
Takasi Senba (2006)
Banach Center Publications
Similarity:
In this paper, we will consider blowup solutions to the so called Keller-Segel system and its simplified form. The Keller-Segel system was introduced to describe how cellular slime molds aggregate, owing to the motion of the cells toward a higher concentration of a chemical substance produced by themselves. We will describe a common conjecture in connection with blowup solutions to the Keller-Segel system, and some results for solutions to simplified versions of the Keller-Segel system,...
Michael D. Plummer, Michael Stiebitz, Bjarne Toft (2003)
Discussiones Mathematicae Graph Theory
Similarity:
Hadwiger's Conjecture seems difficult to attack, even in the very special case of graphs G of independence number α(G) = 2. We present some results in this special case.
M. Wilhelm (1979)
Colloquium Mathematicae
Similarity:
Bostjan Bresar (2001)
Discussiones Mathematicae Graph Theory
Similarity:
A dominating set D for a graph G is a subset of V(G) such that any vertex in V(G)-D has a neighbor in D, and a domination number γ(G) is the size of a minimum dominating set for G. For the Cartesian product G ⃞ H Vizing's conjecture [10] states that γ(G ⃞ H) ≥ γ(G)γ(H) for every pair of graphs G,H. In this paper we introduce a new concept which extends the ordinary domination of graphs, and prove that the conjecture holds when γ(G) = γ(H) = 3.
Snapp, Bart, Tracy, Matt (2008)
Journal of Integer Sequences [electronic only]
Similarity:
E. D. Tymchatyn (1972)
Colloquium Mathematicae
Similarity:
Xinhui An, Baoyindureng Wu (2009)
Discussiones Mathematicae Graph Theory
Similarity:
The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having Δ ≥ 13, or for any planar graph with Δ ≥ 7 and without i-cycles for some i ∈ {3,4,5}. We also prove that ⌈½Δ(G)⌉ ≤ lla(G) ≤ ⌈½(Δ(G)+1)⌉ for any planar graph having Δ ≥ 9. ...
Ying Ying Chan, Robert S. Strichartz (2010)
Fundamenta Mathematicae
Similarity:
We classify all homeomorphisms of the double cover of the Sierpiński gasket in n dimensions. We show that there is a unique homeomorphism mapping any cell to any other cell with prescribed mapping of boundary points, and any homeomorphism is either a permutation of a finite number of topological cells or a mapping of infinite order with one or two fixed points. In contrast we show that any compact fractafold based on the level-3 Sierpiński gasket is topologically rigid.
Lucien Haddad, Claude Tardif (2004)
Discussiones Mathematicae Graph Theory
Similarity:
The Erdős-Faber-Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.
Bert Hartnell, Douglas F. Rall (1995)
Discussiones Mathematicae Graph Theory
Similarity:
The domination number of a graph G is the smallest order, γ(G), of a dominating set for G. A conjecture of V. G. Vizing [5] states that for every pair of graphs G and H, γ(G☐H) ≥ γ(G)γ(H), where G☐H denotes the Cartesian product of G and H. We show that if the vertex set of G can be partitioned in a certain way then the above inequality holds for every graph H. The class of graphs G which have this type of partitioning includes those whose 2-packing number is no smaller than γ(G)-1 as...
Jochen Harant (2013)
Discussiones Mathematicae Graph Theory
Similarity:
Barnette conjectured that each planar, bipartite, cubic, and 3-connected graph is hamiltonian. We prove that this conjecture is equivalent to the statement that there is a constant c > 0 such that each graph G of this class contains a path on at least c|V (G)| vertices.