The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Note on the p -nilpotency in finite groups.”

Nilpotent Groups

Dailu Li, Xiquan Liang, Yanhong Men (2010)

Formalized Mathematics

Similarity:

This article describes the concept of the nilpotent group and some properties of the nilpotent groups.

OnCSQ-normal subgroups of finite groups

Yong Xu, Xianhua Li (2016)

Open Mathematics

Similarity:

We introduce a new subgroup embedding property of finite groups called CSQ-normality of subgroups. Using this subgroup property, we determine the structure of finite groups with some CSQ-normal subgroups of Sylow subgroups. As an application of our results, some recent results are generalized.

On subgroups of ZJ type of an F-injector for Fitting classes F between E and ES.

Ana Martínez Pastor (1994)

Publicacions Matemàtiques

Similarity:

Let G be a finite group and p a prime. We consider an F-injector K of G, being F a Fitting class between E y ES, and we study the structure and normality in G of the subgroups ZJ(K) and ZJ*(K), provided that G verifies certain conditions, extending some results of G. Glauberman (A characteristic subgroup of a p-stable group, (1968), 555-564).

Subnormal, permutable, and embedded subgroups in finite groups

James Beidleman, Mathew Ragland (2011)

Open Mathematics

Similarity:

The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is...

On a class of finite solvable groups

James Beidleman, Hermann Heineken, Jack Schmidt (2013)

Open Mathematics

Similarity:

A finite solvable group G is called an X-group if the subnormal subgroups of G permute with all the system normalizers of G. It is our purpose here to determine some of the properties of X-groups. Subgroups and quotient groups of X-groups are X-groups. Let M and N be normal subgroups of a group G of relatively prime order. If G/M and G/N are X-groups, then G is also an X-group. Let the nilpotent residual L of G be abelian. Then G is an X-group if and only if G acts by conjugation on...

Groups whose all subgroups are ascendant or self-normalizing

Leonid Kurdachenko, Javier Otal, Alessio Russo, Giovanni Vincenzi (2011)

Open Mathematics

Similarity:

This paper studies groups G whose all subgroups are either ascendant or self-normalizing. We characterize the structure of such G in case they are locally finite. If G is a hyperabelian group and has the property, we show that every subgroup of G is in fact ascendant provided G is locally nilpotent or non-periodic. We also restrict our study replacing ascendant subgroups by permutable subgroups, which of course are ascendant [Stonehewer S.E., Permutable subgroups of infinite groups,...