Displaying similar documents to “On the convergence of a modified block SOR algorithm.”

New SOR-like methods for solving the Sylvester equation

Jakub Kierzkowski (2015)

Open Mathematics

Similarity:

We present new iterative methods for solving the Sylvester equation belonging to the class of SOR-like methods, based on the SOR (Successive Over-Relaxation) method for solving linear systems. We discuss convergence characteristics of the methods. Numerical experimentation results are included, illustrating the theoretical results and some other noteworthy properties of the Methods.

Convergence and quasi-optimal complexity of a simple adaptive finite element method

Roland Becker, Shipeng Mao (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We prove convergence and quasi-optimal complexity of an adaptive finite element algorithm on triangular meshes with standard mesh refinement. Our algorithm is based on an adaptive marking strategy. In each iteration, a simple edge estimator is compared to an oscillation term and the marking of cells for refinement is done according to the dominant contribution only. In addition, we introduce an adaptive stopping criterion for iterative solution which compares an estimator for the iteration...

Fast multigrid solver

Petr Vaněk (1995)

Applications of Mathematics

Similarity:

In this paper a black-box solver based on combining the unknowns aggregation with smoothing is suggested. Convergence is improved by overcorrection. Numerical experiments demonstrate the efficiency.

The classic differential evolution algorithm and its convergence properties

Roman Knobloch, Jaroslav Mlýnek, Radek Srb (2017)

Applications of Mathematics

Similarity:

Differential evolution algorithms represent an up to date and efficient way of solving complicated optimization tasks. In this article we concentrate on the ability of the differential evolution algorithms to attain the global minimum of the cost function. We demonstrate that although often declared as a global optimizer the classic differential evolution algorithm does not in general guarantee the convergence to the global minimum. To improve this weakness we design a simple modification...

Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening

Claudia Comi, Giulio Maier (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

For a class of elastic-plastic constitutive laws with nonlinear kinematic and isotropic hardening, the problem of determining the response to a finite load step is formulated according to an implicit backward difference scheme (stepwise holonomic formulation), with reference to discrete structural models. This problem is shown to be amenable to a nonlinear mathematical programming problem and a criterion is derived which guarantees monotonie convergence of an iterative algorithm for...