The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some problems in number theory, combinatorics and combinatorial geometry.”

On hypergraphs of girth five.

Lazebnik, Felix, Verstraëte, Jacques (2003)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Fruit salad.

Gyárfás, András (1997)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

On the Erdős-Gyárfás Conjecture in Claw-Free Graphs

Pouria Salehi Nowbandegani, Hossein Esfandiari, Mohammad Hassan Shirdareh Haghighi, Khodakhast Bibak (2014)

Discussiones Mathematicae Graph Theory

Similarity:

The Erdős-Gyárfás conjecture states that every graph with minimum degree at least three has a cycle whose length is a power of 2. Since this conjecture has proven to be far from reach, Hobbs asked if the Erdős-Gyárfás conjecture holds in claw-free graphs. In this paper, we obtain some results on this question, in particular for cubic claw-free graphs

The cycle-complete graph Ramsey number r(C₅,K₇)

Ingo Schiermeyer (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.